Figure 1 Serum (A) and heart (B) IL-1β levels in experimental groups.
Figure 1 Serum (A) and heart (B) IL-1β levels in experimental groups.
Figure 2 Serum (A) and heart (B) nitrite concentrations.
Figure 2 Serum (A) and heart (B) nitrite concentrations.
Figure 3 Comparison of MDA (A) and total thiol concentration (B) in heart homogenate in experimental groups.
Figure 3 Comparison of MDA (A) and total thiol concentration (B) in heart homogenate in experimental groups.
Figure 5 H&E staining of left ventricles in control (A) and LPS (B) groups. Arrows indicate infiltration of inflammatory cells and disarrangement of fibers. TQ reduced infiltration of inflammatory cells in the heart tissue (C-E: TQ 2, 5, and 10 mg/kg; respectively). n=6 in each group.
Figure 5 H&E staining of left ventricles in control (A) and LPS (B) groups. Arrows indicate infiltration of inflammatory cells and disarrangement of fibers. TQ reduced infiltration of inflammatory cells in the heart tissue (C-E: TQ 2, 5, and 10 mg/kg; respectively). n=6 in each group.
Figure 4 Permeability of heart tissue in experimental groups.
Figure 4 Permeability of heart tissue in experimental groups.
Figure 6 Masson trichrome staining of left ventricular wall fibrosis. A: control; B: LPS group shows more collagen deposition (Blue color indicates collagen fibers characterized by black arrow). Administration of TQ improved cardiac fibrosis dose dependently. Cardiac fibrosis expressed as higher collagen content (%) in LPS group compare to control which improved by TQ administration (F).
Figure 6 Masson trichrome staining of left ventricular wall fibrosis. A: control; B: LPS group shows more collagen deposition (Blue color indicates collagen fibers characterized by black arrow). Administration of TQ improved cardiac fibrosis dose dependently. Cardiac fibrosis expressed as higher collagen content (%) in LPS group compare to control which improved by TQ administration (F).
Figure 7 Perivascular fibrosis around left anterior descending coronary artery (black arrows) stained by Masson trichrome. Blue color indicates collagen deposition. A: control; B: LPS; C-E: TQ by doses of 2, 5 and 10 mg/kg; respectively.
Figure 7 Perivascular fibrosis around left anterior descending coronary artery (black arrows) stained by Masson trichrome. Blue color indicates collagen deposition. A: control; B: LPS; C-E: TQ by doses of 2, 5 and 10 mg/kg; respectively.
References
- Ahmad I, Muneer KM, Tamimi IA, Chang ME, Ata MO, Yusuf N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol. 2013;270(1):70-6. https://doi.org/10.1016/j.taap.2013.03.027
- Alimohammadi S, Hobbenaghi R, Javanbakht J, Kheradmand D, Mortezaee R, Tavakoli M, et al. Protective and antidiabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: an experimental study with histopathological evaluation. Diagn Pathol. 2013;8:137. https://doi.org/10.1186/1746-1596-8-137
- Asgharzadeh F, Rouzbahani, R, Khazaei, M. Chronic low-grade inflammation: Etiology and its effects Journal of Isfahan Medical School. 2016;34(379):408-21.
- Bai T, Lian LH, Wu YL, Wan Y, Nan JX. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int Immunopharmacol. 2013;15(2):275-81. https://doi.org/10.1016/j.intimp.2012.12.020
- Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine. 2017;96:173-84. https://doi.org/10.1016/j.cyto.2017.04.015
- Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res. 2015;95-96:138-58. https://doi.org/10.1016/j.phrs.2015.03.011
- Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119(10):2868-78. https://doi.org/10.1172/JCI39421
- El-Mahmoudy A, Matsuyama H, Borgan MA, Shimizu Y, El-Sayed MG, Minamoto N, et al. Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages. Int Immunopharmacol. 2002;2(11):1603-11. https://doi.org/10.1016/S1567-5769(02)00139-X
- Ghazwani M, Zhang Y, Gao X, Fan J, Li J, Li S. Anti-fibrotic effect of thymoquinone on hepatic stellate cells. Phytomedicine. 2014;21(3):254-60. https://doi.org/10.1016/j.phymed.2013.09.014
- Gholamnezhad Z, Havakhah S, Boskabady MH. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J Ethnopharmacol. 2016;190:372-86. https://doi.org/10.1016/j.jep.2016.06.061
- Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195-224. https://doi.org/10.1101/gad.1228704
- Helmersson J, Vessby B, Larsson A, Basu S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation. 2004;109(14):1729-34. https://doi.org/10.1161/01.CIR.0000124718.99562.91
- Hosseinzadeh H, Sadeghnia HR. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci. 2005;8(3):394-9.
- Nematollahi S, Nematbakhsh M, Haghjooyjavanmard S, Khazaei M, Salehi M. Inducible nitric oxide synthase modulates angiogenesis in ischemic hindlimb of rat. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009;153(2):125-9. https://doi.org/10.5507/bp.2009.021
- Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008;8(12):923-34. https://doi.org/10.1038/nri2449
- Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515-40. https://doi.org/10.1016/0891-5849(90)90131-2
- Khazaei M, Nematbakhsh M. Coronary vascular and aortic endothelial permeability during estrogen therapy: a study in DOCA-salt hypertensive ovariectomized rats. Physiol Res. 2004;53(6):609-14.
- Ko HJ, Oh SK, Jin JH, Son KH, Kim HP. Inhibition of Experimental Systemic Inflammation (Septic Inflammation) and Chronic Bronchitis by New Phytoformula BL Containing Broussonetia papyrifera and Lonicera japonica. Biomol Ther (Seoul). 2013;21(1):66-71. https://doi.org/10.4062/biomolther.2012.081
- Leon CG, Tory R, Jia J, Sivak O, Wasan KM. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res. 2008;25(8):1751-61. https://doi.org/10.1007/s11095-008-9571-x
- Lew WY, Bayna E, Molle ED, Dalton ND, Lai NC, Bhargava V, et al. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice. PLoS One. 2013;8(4):e61057. https://doi.org/10.1371/journal.pone.0061057
- Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725-34. https://doi.org/10.1038/nri910
- Mansour M, Tornhamre S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J Enzyme Inhib Med Chem. 2004;19(5):431-6. https://doi.org/10.1080/14756360400002072
- Tahergorabi Z, Khazaei M. The relationship between inflammatory markers, angiogenesis, and obesity. ARYA Atheroscler. 2013;9(4):247-53.
- Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82-97.
- Min HY, Song SH, Lee B, Kim S, Lee SK. Inhibition of lipopolysaccharide-induced nitric oxide production by antofine and its analogues in RAW 264.7 macrophage cells. Chem Biodivers. 2010;7(2):409-14. https://doi.org/10.1002/cbdv.200900040
- Norouzi F, Abareshi A, Asgharzadeh F, Beheshti F, Hosseini M, Farzadnia M, et al. The effect of Nigella sativa on inflammation-induced myocardial fibrosis in male rats. Res Pharm Sci. 2017;12(1):74-81. https://doi.org/10.4103/1735-5362.199050
- Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985). 2005;98(4):1154-62. https://doi.org/10.1152/japplphysiol.00164.2004
- Elmi S, Sallam NA, Rahman MM, Teng X, Hunter AL, Moien-Afshari F, et al. Sulfaphenazole treatment restores endothelium-dependent vasodilation in diabetic mice. Vascul Pharmacol. 2008;48(1):1-8. https://doi.org/10.1016/j.vph.2007.09.001
- Sallam N, Khazaei M, Laher I. Effect of moderate-intensity exercise on plasma C-reactive protein and aortic endothelial function in type 2 diabetic mice. Mediators Inflamm. 2010;149678(10):2.
- Tekeoglu I, Dogan A, Demiralp L. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother Res. 2006;20(10):869-71. https://doi.org/10.1002/ptr.1964
- Wang Y, Gao H, Zhang W, Fang L. Thymoquinone inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells. Int Immunopharmacol. 2015;26(1):169-73. https://doi.org/10.1016/j.intimp.2015.03.013
- Woo CC, Kumar AP, Sethi G, Tan KH. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012;83(4):443-51. https://doi.org/10.1016/j.bcp.2011.09.029
- Yasuda S, Lew WY. Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ Res. 1997;81(6):1011-20. https://doi.org/10.1161/01.RES.81.6.1011