• Title/Summary/Keyword: Stress Physiology

Search Result 737, Processing Time 0.025 seconds

Maternal separation in mice leads to anxiety-like/aggressive behavior and increases immunoreactivity for glutamic acid decarboxylase and parvalbumin in the adolescence ventral hippocampus

  • Eu-Gene Kim;Wonseok Chang;SangYep Shin;Anjana Silwal Adhikari;Geun Hee Seol;Dae-Yong Song;Sun Seek Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.113-125
    • /
    • 2023
  • It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed: dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.

Effects of Bambusae Caulis in Liquamen on the Stress Proteins Induced by Heating in Endothelial Cells (혈관내피세포에 열 충격 부과시 죽력이 stress proteins의 발현에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.496-499
    • /
    • 2004
  • We have previously observed that Bambusae Caul is in Liquamen (BCL) stimulates the adipose conversion of 3T3-L1 cells and molecular chaperones were involved in the process of the assembly and replacement of laminin subunits in Bovine aortic endothelial cells(BAEC). Endothelial cells are exposed to continuous shear stress due to the blood flow. Heat shock protens(hsp) are a well-known stress response protein, namely, stress proteins. To investigate effects of BCL on the stress proteins induced by heating in endothelial cells, we have analyzed synthetic amounts of stress proteins in sodium dodecyl sulfate gel electrophoresis under reducing conditions. Under the condition of heating stress, BCL inhibited the synthesis of stress proteins in endothelial cells. These results suggest that BCL may have an important role for expression of stress proteins induced by heating in endothelial cells.

Study of Growth and Anthocyanin Accumulation by Ozone Stress in Rice (벼 오존가스 노출에 따른 초기 생육 및 안토시아닌 생합성 변화 분석 연구)

  • HyeonSeok Lee;WoonHa Hwang;SeoYeong Yang;Yeongseo Song;WooJin Im;HoeJeong Jeong;ChungGen Lee;Juhee Kim;MyoungGoo Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.108-116
    • /
    • 2023
  • Recently, the concentration of fine dust causative substances (NOx, VOC, etc.) in the atmosphere has increased, resulting in high concentrations of tropospheric ozone (O3) and increased damage to crops. This study aimed to analyze the impact of high concentrations of ozone gas on the initial growth of rice plants and investigate the relationship between ozone damage resistance and anthocyanin biosynthesis. To achieve this, rice plants were exposed to elevated levels of ozone g as using an ozone chamber, and subsequent measurements were taken to assess changes in growth, the percentage of damaged leaves, and the anthocyanin content. The results revealed that varieties with a higher proportion of damaged leaves exhibited a relative increase in anthocyanin biosynthesis following ozone exposure. Notably, detrimental effects on growth, such as decreased biomass, were mitigated. Additionally, Anthocyanin biosynthesis genes in rice were listed by selecting homologous genes from Arabidopsis and Maize. The expression of OsF3H2, OsFLS1 and OsLDOX3 was induced during ozone treatment. This result is expected to contribute to the study of the protection mechanism of plants from ozone damage.

Peroxiredoxin 6 Promotes Lung Cancer Cell Invasion by Inducing Urokinase-Type Plasminogen Activator via p38 Kinase, Phosphoinositide 3-Kinase, and Akt

  • Lee, Seung Bum;Ho, Jin-Nyoung;Yoon, Sung Hwan;Kang, Ga Young;Hwang, Sang-Gu;Um, Hong-Duck
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.583-588
    • /
    • 2009
  • The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Impact of Heat Stress on Pollen Fertility Rate at the Flowering Stage in Korean Rice (Oryza sativa L.) Cultivars

  • Thuy, Tran Loc;Lee, Chung-Kuen;Jeong, Jae-Hyeok;Lee, Hyeon-Suk;Yang, Seo-Young;Im, Yeon-Hwa;Hwang, Woon-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • Rice is very sensitive to high temperatures during the reproductive stage, particularly during the flowering and anthesis periods. To determine how high temperatures result in sterility during the flowering period in Korean rice cultivars, groups of 11 cultivars were subjected to different temperature regimes (24, 28, 30, and 33℃) during the flowering stage using sunlit phytotrons. At an average of 33℃, all 11 rice cultivars reached anthesis earlier than at the other temperatures. Microscopy analyses revealed significant differences in pollen germination and pollen viability in cultivars grown at 33℃ compared to those cultured at lower temperatures. At 33℃, the cultivars had significantly lower fertility rates (47% reduction) than cultivars grown at 24℃. These findings are important as rice pollination and fertility depend on the pollen viability and germination. The present study shows that rice fertility is negatively affected by excessively high temperatures.

Effects of Season Differences on the Cecal Microbiome of Broiler at Conventional Farms and Welfare System Farms (계절에 따른 일반 농가와 복지 농가 육계의 맹장 내 미생물 균총에 미치는 영향)

  • Junsik Kim;Seol Hwa Park;Minji Kim;Seong Hoon Shim;Hwan Ku Kang;Jin Young Jeong
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2024
  • The gut microbiome of broilers is a critical factor in overall health and productivity. However, high summer temperatures and high stocking density (conventional farm condition) may cause stress to broilers, resulting in an imbalance in the gut microbiome. This study was conducted to compare the gut microbiome of broilers between spring and summer in welfare (Bosung, Jeollanam-do, South Korea) and conventional farms (Jangsu, Jeollabuk-do, South Korea). A total of 31 broilers were assigned to the following groups: conventional farm in spring (n = 8); conventional farm in summer (n = 8); welfare farm in spring (n = 7); welfare farm in summer (n = 8). Cecal digesta were collected from eight broilers from each farm, and microbiome analysis was performed using 16S rRNA gene sequencing. Beta diversity analysis indicated clear differences in cecal microbiome composition between spring and summerin both welfare and conventional farm. At the phylum level, analysis of conventional farm revealed a higher proportion of Bacteroidetes in spring than in summer. At the genus level, broilers exhibited a higher abundance of Bacteroides and Alistipesin spring compared to summer. In contrast, the difference in microbial flora composition observed in welfare farm was relatively small compared to conventional farm. In conclusion, the results of this study suggest that heat stress can negatively affect the caecum microbiome of broilers. However, improvements in the housing environment can mitigate the effects of heat stress.

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.

Water Extract of Samultang Reduces Apoptotic Cell Death by $H_2O_2$-Induced Oxidative Injury in SK-N-MC Cells

  • Lee, Gyoung-Wan;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.139-145
    • /
    • 2009
  • The purpose of this study was to evaluate the effects of the water extract of Samultang (SMT), a Chinese herb, on apoptotic cell death by $H_2O_2$-induced oxidative stress in SK-N-M C cells. A nuclear fragmentation was observed via fluorescence imaging 12 h after exposure to 30 ${\mu}M$ $H_2O_2$ and DNA laddering was detected via agarose electrophoresis gel. In addition, increases in sub-G1 phase and cleavage of the PARP protein were observed. However, treatment with SMT for 2 h prior to $H_2O_2$ exposure significantly reduced apoptotic cell death induced by incubation with 30 ${\mu}M$ $H_2O_2$ in SK-N-MC cells. Pre-incubation with water extract of SMT for 2 h prevented the $H_2O_2$-induced decrease in mitochondrial transmembrane potential. SMT also attenuated the increase in caspase-3 activity and the breakdown of PARP protein caused by $H_2O_2$-induced oxidative stress. These results suggest that the water extract of SMT provides inhibition of apoptotic cell death against oxidative injury in SK-N-MC cells.

p66shc Adaptor Protein Suppresses the Activation of Endothelial Nitric Oxide Synthase in Mouse Embryonic Fibroblasts

  • Lee, Sang-Ki;Kim, Young-Shin;Kim, Cuk-Seong;Son, Sook-Jin;Yoo, Dae-Goon;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.155-159
    • /
    • 2006
  • Among the Shc proteins, p66shc is known to be related to oxidative stress responses and regulation of the production of reactive oxygen species (ROS). The present study was undertaken to investigate the role of p66shc on endothelial nitric oxide synthase (eNOS) activity in the mouse embryonic fibroblasts (MEFs). When wild type (WT) or p66shc (-/-) MEFs were transfected with full length of eNOS cDNA, the expression and activity of eNOS protein were higher in the p66shc (-/-) MEFs. These phenomena were reversed by reconstitution of p66shc cDNA transfection in the p66shc (-/-) MEFs. The basal superoxide production in the p66shc (-/-) MEFs was not significantly different from that of WT of MEFs. However, superoxide production induced by NADPH in the p66shc (-/-) MEF was lesser than that in WT MEFs. When compared with WT MEFs, cell lysate of p66shc (-/-) MEFs showed significantly increased H-ras activity without change of endogenous H-ras expression. Our findings suggest the pivotal role of p66shc adaptor protein played in inhibition of endothelial nitric oxide production via modulation of the expression and/or activity of eNOS protein.