• Title/Summary/Keyword: Stress Path

Search Result 610, Processing Time 0.022 seconds

An Overstress Model for Non-proportional Loading of Nylon 66 (Nylon 66의 무비례 하중에 대한 과응력 모델)

  • Ho, Gwang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

The Effects of Hospital Worker's Job Stress and Work Posture Risk on the Muscular Skeletal Disease related Consciousness Symptom - With Emphasis on Path Analysis Model - (병원근로자의 직무스트레스와 작업자세 위험도가 각 신체부위의 근골격계질환에 미치는 영향 - 경로분석 모델을 중심으로 -)

  • Choi, Soon-Young;Im, Su-Jung;Lee, Yang-Ho;Park, Dong-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.57-67
    • /
    • 2009
  • The psychosocial stress and musculoskeletal disorders(MSDs) have been one of major health problems for hospital workers. This study tried to understand the relationship between symptoms associated with MSDs and risk factors such as working posture, job stress, psychosocial stress and fatigue. A total number of 655 hospital workers participated in this study. Specifically, REBA was applied for evaluating working posture and a checklist prepared by KOSHA(Korean Occupational Safety and Health Agency) was used for symptom survey. A questionnaire from KOSHA was also used for collecting data associated with job stress, psychosocial stress and fatigue. All these data were formulated and modeled by path analysis which was one of major statistical tools in this study. Specifically, path analysis for the data we collected came up with several major findings. As a result, as for body part(neck), (waist) and (arms) the degree of risk of work posture measured with the use of job stress(KOSS), psycho-social stress(PWI-SF) and REBA is significantly more affected by fatigue than muscular skeletal disease related consciousness symptom. However, regarding bod(wrist), the degree of risk of work posture measured with the use of job stress(KOSS) and REBA is directly affected by muscular skeletal disease related consciousness symptom. This study is meaningful in that the study clarified the causal relations of the degree of risk of work posture, degree of fatigue, and muscular skeletal disease related consciousness symptoms by each body part measured with the use of work stress(KOSS), psycho-social stress(PWI-SF) and REBA.

A STREE-STRAIN THEORY FOR COMPACTED ROCKFILL (다짐된 사약재료의 응력-변형 이론)

  • 이영희
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.77-96
    • /
    • 1987
  • Based on observation emerged from the undrained tests and the anisotropic consolidation tests, an incremental stress-strain theory for rockfill is proposed in a manner similar to that developed ky Cambridge Group for normally consolidated soils; the volumetric strain due to stress increment is the same as the increment due to an undrained component followed by an increment along the constant stress ratio path. The strains in drained tests are predicted from those in the undrained tests and in the anisotropic consolidation tests. An expression for the undrained stress path is derived based on the bilinear relationship between the pore pressure developed and the stress ratio observed during untrained tests. Good agreement is found between the calculated and measured strains. This trend in behaviour would be helpful in establishing a stress.strain model for rockfill using the elasto-plastic behaviour with the concept of plastic potentials and flow rules.

  • PDF

Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II) (혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향)

  • Gong, Byeong-Chae;Choi, Myoung-Su;Kwon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

Experimental Study on the Unsaturated Characteristics of Dredging Soils at Saemangeum Area (새만금지역 준설토의 불포화 특성에 대한 실험적 연구)

  • Song, Young-Suk;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • The matric suction and volumetric water content of dredging soils obtained from Saemangeum area were measured by the automated Soil-Water Characteristic Curve (SWCC) apparatus under both drying and wetting conditions. Based on the test result, SWCCs of the dredging soils were estimated by the van Genuchten(1980) model. The matric suction of drying process is larger than that of wetting process at a same effective degree of saturation. The suction stresses for various matirc suctions were estimated using Lu and Likos(2006) model and the Suction Stress Characteristic Curves (SSCC) were predicted using the independent parameter of SWCC. The suction stress of drying path was increased and decreased, while the suction stress of wetting path was continuously decreased with increasing the effective degree. Also, the suction stress of drying path is larger than that of wetting path at a same effective degree of saturation. The Hydraulic Conductivity Function(HCF) was also predicted by the van Genuchten(1980) model. The hydraulic conductivity was increased with increasing the volumetric water content. The hydraulic conductivity of drying path is larger than that of wetting path at a same matric suction. According to the results of SWCCs and SSCCs, the hysteresis phenomenon of suction stress or matric suction during both drying and wetting paths was occurred. The main reason of hysteresis phenomenon is a ink bottle effect of water among soil particles.

Evaluation of Thin Film Residual Stress through the Analysis of Stress Relaxation Path and the Modeling of Contact Morphology (응력완화 경로분석과 압입자/시편간 접촉형상 모델링에 바탕한 박막재료의 국소 잔류응력 평가)

  • Lee, Yun-Hee;Kim, Sung-Hoon;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.237-242
    • /
    • 2001
  • Residual stress is a dominant obstacle to efficient production and safe usage of products by reducing the mechanical strength and failure properties. Especially, it causes interfacial failure and substrate deflection in the case of thin film. So, the exact evaluation and optimum control of thin film residual stress is indispensable. However, hole drilling or X-ray diffraction techniques have some limits in application to thin film. And, curvature technique for thin film materials cannot give the information about local stress variation. Therefore, we applied the nanoindentation technique in evaluating the thin film residual stress. In this study, we modeled the change of indentation loading curve for residually stressed and stress-free thin films during stress relaxation. The value of residual stress was directly related to the indentation depth change by relaxation. The residual stress from nanoindentation analysis was consistent with the result from curvature technique.

  • PDF

Prediction of Propagation Path for the Interface Crack in Bonded Dissimilar Materials (이종접합재의 계면균열에 대한 진전경로의 예측)

  • 정남용;송춘호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.112-121
    • /
    • 1996
  • Applications of bonded dissimilar materials such as metal/ceramics and resin/metal joints, are very increasing in various industry fields. It is required to find crack propagation direction and path applying to the fracture mechanics on the bonded joint of dissimilar meterials. In this paper, crack propagation direction and path were simulated numerically by using boundary element method. Crack propagation angle is able to easily determine based on the maximum stress concept. Fracture tests of Al/Epoxy dissimilar materials with an interface crack are carried out under various mixed mode conditions by using the specimens of bonded scarf joints. It is found that the experimental results are well coincide with the analysis results of boundary element method.

Fracture Mechanics Analysis of Multiple Load Path Plate (다중 균열 보강 판재에 관한 파괴 역학적 해석)

  • Han, Moon-Sik;Lee, Yang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.109-115
    • /
    • 2001
  • The compliance approach to the problem of load sharing between a cracked plate and multiple plate used to bridge the crack. The theory is validated by using calculated stress intensity factors for the multiple load path plate to reduce experimentally observed growth rate to a common base. Calculations are them made on the effect of multiple load path plate width on fatigue crack retardation in order to demonstrate the predictive capability of the technique.

  • PDF

Biaxial Fracture Behavior of Alumina Ceramics : Indentation Effect on Ball-on-3-ball Test (압입에 따른 알루미나 세라믹스의 이축 파괴 거동)

  • 정성민;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.713-720
    • /
    • 2000
  • The biaxial fracture behavior of alumina ceramics was studied using ball-on-3-ball test. The polished surfaces of alumina specimens were indented at 0mm, 1mm, 2mm, 3mm apart from the center of the specimen along path A, passing between the two supporting balls from the center of the specimen, and along path B, passing above the three supporting balls from the center of the specimen. The fracture strength of the indented specimens was measured using the ball-on-3-ball test, a kind of biaxial strength test. The fracture strength increased with increasing the distance from the center to indented position. The fracture strength of the specimen indented along path B was higher than that of the specimens indented along path A. It was presented that the fracture caused by tangential stress rather than radial stress when the indented positions are 1mm and 2mm from the center of the specimen. This phenomenon was in good agreement with FEM analysis.

  • PDF

Analysis of Fracture Mechanics Parameter and Fracture Surface in Bonded Ceramic Joints (세라믹 접합부재에 대한 파괴역학인자 및 파면 해석)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, attempts have been made to be join ceramics to metals in order to make up for the brittleness of ceramics. The difference in the coefficients of linear expansion of the two materials joined at high temperature will cause residual stress, which has a strong influence on the strength of the bonded joints. In this paper, the residual stress distribution and stress intensity factors of the ceramic/metal bonded joints were analyzed by 2-dimensional elastic boundary element method. Fracture toughness tests of ceramic/metal bonded joints with an interface crack were carried out. So the advanced method of quantitative strength evaluation for ceramic/metal bonded joints is to be suggested. Fracture surface and crack propagation path were observed using scanning electron microscope.

  • PDF