• Title/Summary/Keyword: Stress Intensity factor($K_I$)

Search Result 154, Processing Time 0.026 seconds

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method ( I ) - Development of Weight Function Method - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형 관통균열의 음력확대계수 해석 ( I ) - 가중함수법의 전개 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Hyeon, Cheol-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1659-1670
    • /
    • 2001
  • It has been reported that cracks at mechanical fastener holes usually nucleate as elliptical corner cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. The weight function method is an efficient technique to calculate the stress intensity factors fur elliptical cracks using uncracked stress field. In this study the weight function method for three dimensional mixed-mode problem applied to elliptical comer cracks Is modified for elliptical arc through cracks and the stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by the weight function method. This study consists of two parts and in part I , the weight function method for elliptical arc through cracks is developed and verified.

Determination ofStress Intenstiy Factor by Strain Measurement (스트레인 측정에 의한 응력확대계수의 결정)

  • 이억섭;홍성경;윤경수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.369-374
    • /
    • 1993
  • Measurements of strain near a crack tip with electrical resistance strain gages do not usually provide a reliable value of stress intensity factor (K sub I) because of local yielding and limited regions for strain-gage placement. This paper attempted to define a valid region and to indicate procedures for locating and orienting the strain-gage to determine stress intensity factor accurately from one stain-gage readings.

  • PDF

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Analyses of Stress Singularities on Bonded Interfaces in the IC Package by Using Boundary Element method (경계요소법을 이용한 반도체 패키지의 응력특이성 해석)

  • Park, Cheol-Hee;Chung, Nam-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.94-102
    • /
    • 2007
  • Applications of bonded dissimilar materials such as large scale integration (LSI) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in LSI. In order to investigate stress singularities on the bonded interface edges and delamination of die pad and resin in the IC package. In this paper, stress singularity factors(${\Gamma}_i$) and stress intensity factors($K_i$) considering thermal stress in the IC package were analyzed by using the 2-dimensional elastic boundary element method(BEM).

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

The calculation of stress intensity factors by the surface integral method

  • Jin, Chi-Sub;Jang, Heui-Suk;Choi, Hyun-Tae
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.541-553
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by using the surface integral defined around the crack tip of the structure. In this work, the integral method is derived naturally from the standard path integral J. But the use of the surface integral is also extended to the case where body forces act. Computer program for obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively accurate $K_I$ and K_{II}$ values can be obtained for the outer integral radius ranging from 1/3 to 1 of the crack length and for inner one zero.

Mode I and Mode II Stress Intensity Factors for a Surface Cracked in TiN/Steel Under Hertzian Rolling Contact (Hertzian 접촉하중시 TiN/Steel의 표면균열에 대한 모드 I과 모드 II 응력확대계수)

  • Kim, Byeong-Su;Kim, Wi-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1163-1172
    • /
    • 2001
  • The two dimensional problem of a layered tribological system(TiN/Steel) containing a vertical surface breaking crack and subject to rolling contact is considered in this study. Using finite elements and stress extrapolation method, a series of preliminary models are developed. Preliminary results indicate that the extrapolation technique is valid to determine Modes I and II stress intensity factors for cracks. In the case of TiN/Steel medium, KI and KII were determined for variations in crack length, layer thickness, and load location. The results show that KII reaches maximum values when the contact is adjacent to the crack where Mode I stresses are compressive. KII values decrease with decreased crack length and significantly decrease for reduced layer thickness.

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

ANALYSIS FOR 3-POINT LOADED DISC BY PHOTOELASTICITY (3점 압축하중을 받는 원판의 광탄성 해석)

  • 함경춘;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • Disc specimen with the center crack and edge crack simulated by two-dimensional static method is used to analyze the stress field around the crack tip in terms of the stress intensity factor, K. A simple and convenient method of testing to realize the mifed mode stress intensity factor of the cracked body is used, The conclusions obtatined in this photoelastlc analysis are as follows ; 1. According to this experiment, cracked disc specimen can be used to demonstrate the mixed mode stress intensity factor analysis by simply changing the crack angle from the loading line. 2. Despite the simplicity and continuous data reading, the photoelastic method shows the slightly lower strain reading comparing to the FEM analysis method. 3. In this photoelastic analysis, $K_{I}$ of center cracked disc specimen under a pair of compressive load shows negative value as the crack angle increases over 30$^{\circ}$.

  • PDF

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF