• Title/Summary/Keyword: Stress Function

Search Result 3,074, Processing Time 0.032 seconds

Detachable zirconia prosthesis using Milled bar and ADD-TOC attachment in partial edentulous mandible: A case report (하악 부분 무치악 환자에서 Milled-bar와 ADD-TOC 부착 장치를 이용한 탈착 가능한 지르코니아 보철물 수복 증례)

  • Min-Sung Sohn;Jung-Bo Huh
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • Implant overdentures are widely used as a treatment method to restore oral function in completely edentulous or partially edentulous patients with severe bone resorption. Using a milled bar, it is mechanically advantageous as the implant fixtures are splinted. Applying additional attachments to the bar has the advantage of dispersing the stress applied to the implant. In this case, a patient who used implant overdentures using 4 implants wanted to fabricate a new prosthesis due to repeated fractures of the denture and weakened retention. Milled bar with ADD-TOC attachment and zirconia prosthesis were fabricated by CAD-CAM method and mechanically and aesthetically satisfactory results were obtained.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Evaluation of Strength Parameters of Cemented Sand (고결모래의 강도정수 평가)

  • Lee, Hoon-Joo;Choi, Sung-Kun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2008
  • This study proposes the equations evaluating the shear strength of cemented sand by analytical interpretation based on Mohr-Coulomb failure criteria, and verifies them using the results of triaxial and unconfined compression tests. The internal friction angle of cemented sand is identical to that of uncemented one regardless of the stress level, while the cohesion intercept of cemented sand is constant before the breakage of cementation bonds. Therefore, the shear strength of cemented sand can be represented as a summation of the shear strength of uncemented sand and the unconfined compressive strength of cemented sand. In addition, the cohesion intercept of cemented specimen can be expressed as a function of unconfined compressive strength and friction angle. In the transition zone, assuming a constant shear strength, the equations to evaluate shear strength and cohesion intercept of cemented sand are also represented. It is observed that the predicted values using these solutions agree well with the experimental results. The experimental results also show a linear relationship between the unconfined compressive strength and the breaking point of cementation bonds.

Current Update of Cartilage Regeneration Using Stem Cells in Osteoarthritis (골관절염에서 줄기세포를 이용한 연골 재생의 최신 지견)

  • Seon, Jong-Keun;Choi, Ik-Sun;Ko, Jee-Wook
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.478-489
    • /
    • 2019
  • Osteoarthritis is a disease characterized by the progression of articular cartilage erosion, that increases pain during joint motion and reduces the ability to withstand mechanical stress, which in turn limits joint mobility and function. Damage to articular cartilage due to trauma or degenerative injury is considered a major cause of arthritis. Numerous studies and attempts have been made to regenerate articular cartilage. In the case of partial degenerative cartilage changes, microfracture and autologous chondrocyte implantation have been proposed as surgical treatment methods, but they have disadvantages such as insufficient mutual binding to the host cells, inaccurate cell delivery, and deterioration of healthy cartilage. Stem cell-based therapies have been developed to compensate for this. This review summarizes the drawbacks and consequences of various cartilage regeneration methods and describes the various attempts to treat cartilage damage. In addition, this review will discuss cartilage regeneration, particularly mesenchymal stem cell engineering-based therapies, and explore how to treat future cartilage regeneration using mesenchymal stem cells.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

A study on the bending stresses of tunnel shotcrete due to the coefficient of lateral earth pressure (측압계수의 변화에 따른 터널 숏크리트의 휨응력에 관한 연구)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.23-35
    • /
    • 2009
  • This study was performed to investigate the bending stresses of tunnel shotcrete as a function of the coefficient of lateral earth pressure. To perform this study, a large scale model tunnel with an one-lane horseshoe shaped road tunnel was prepared. The 3 dimensional numerical analyses were carried out to verify the results obtained from the model tests. For the loading system during the tests, 11 cylinder pressure jacks which can be controlled individually were used to simulate various loading conditions. The tests were preformed three times with three different lateral earth pressure coefficients of 0.5, 1.0 and 2.0. The bending stresses of shotcrete measured in tests were compared and analyzed with those calculated from numerical analyses. As a result, it was found that the bending compressive stresses obtained from numerical analyses were similar to those of tunnel model tests and bending tensile stresses were slightly overestimated during numerical analyses.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Supporting Resilience and the Management of Grief and Loss among Nurses: Qualitative Themes from a Continuing Education Program

  • Esplen, Mary Jane;Wong, Jiahui;Vachon, Mary L.S.
    • Journal of Hospice and Palliative Care
    • /
    • v.25 no.2
    • /
    • pp.55-65
    • /
    • 2022
  • Caring for patients with cancer is highly stimulating and rewarding, attracting health professionals to the field who enjoy the challenge of managing a complex illness. Health professionals often form close bonds with their patients as they confront ongoing disease or treatment impacts, which may be associated with multiple losses involving function and/or eventual loss of life. Ongoing exposure to patient loss, along with a challenging work setting, may pose significant stress and impact health professionals' well-being. The prevalence rates of burnout and compassion fatigue (CF) are significant, yet health professionals have little knowledge on these topics. A 6-week continuing education program consisting of weekly small-group video-conferencing sessions, case-based learning, and an online community of practice was delivered to health care providers providing oncology care. Program content included personal, organization and team-related risk and protective factors associated with CF, grief models, and strategies to mitigate against CF. Content analysis was completed as part of the program evaluation. In total, 189 participants (93% nurses) completed the program, which was associated with significant improvements in confidence and knowledge of CF and strategies to support self and team resilience. Qualitative themes and vignettes from experiences with the program are presented. Key themes included knowledge gaps, a lack of support related to CF and strategies to support resilience, organization-and team-based factors that can inhibit expression about the impacts of clinical work, the health professional as a "person" in caregiving, and the role of personal variables, self-skill practices, and recommendations for education and support for self and teams.

Effects of a Horticultural Activity Program Based on Validation Therapy on the Mental Functions of Elderly Patients in Nursing Homes

  • Lee, Sook
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.611-619
    • /
    • 2019
  • This study was conducted to investigate changes in the mental functions of the elderly in nursing facilities affected by a horticultural therapy program based on validation therapy. To meet the purpose, we conducted a horticultural therapy program based on validation therapy with 58 elderly participants (average age 79.12±6.84, men and women) once a week, 50 minutes per session, in a total of 10 sessions. Participants were divided into the control and experimental group with convenience sampling. The program was carried out from March 15 to November 22, 2018. Vibraimage 8 pro(ELSYS, 2014) is a recent, psychologically based, emotional-recognition visual imaging technology that measures pixels microvibration in terms of digital frequency and amplitude parameters. To examine the effects of the horticultural therapy program based on validation therapy, Vibraimage was used to assess aggression, stress, tension, suspect, balance, charm, energy, self-regulation, inhibition, neuroticism and positive, negative, physiological domains of mental functions before and after program. As a result, the mean score of the positive domain in the control group significantly decreased from 63.89±5.09 to 60.74±5.48, but it decreased without statistical significance in the experimental group from 63.98±5.45 to 61.39±6.02. The mean score of neuroticism in the experimental group significantly decreased from 31.64±10.94 to 22.87±13.79. Moreover, the mean score of the physiological domain in the experimental group also significantly decreased from 25.08±6.27 to 19.42±8.80. Accordingly, horticultural therapy program based on validation therapy can be utilized as a program to promote mental health, especially maintaining positive mental health function of the eldery, helping those who live in long-term care facilities enjoy a happier life more happier.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.