• 제목/요약/키워드: Stress Collapse

Search Result 189, Processing Time 0.025 seconds

Buildability for Concrete 3D Printing According to Printing Time Gap (콘크리트 3D프린팅의 적층시간 간격에 따른 적층 성능)

  • Lee, Yoon Jung;Song, Jin-Soo;Choi, Seung-Ho;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • Buildability of fresh concrete, a key element of Concrete 3D printing, is the ability to build filaments at a desirable height without excessive deformation or collapse. Buildability is closely related to yield stress, and the higher the yield stress, the better. Also, the shear stress of fresh concrete increases as it hardens over the time after extruded, and consequently the buildability increases. Therefore, in concrete 3D printing, proper time gaps between printed layers (Printing Time Gap, PTG) are required to ensure the buildability of fresh concrete. As the PTG increases, the buildability increases; however, an excessive PTG reduces the bond performance between the printed layers, and the extrudability can be lowered as the printing time increases. In this research, therefore, 3D printing experiments were conducted with the variable of PTG to examine the buildability of 100 MPa-high strength concrete. In addition, a pseudo-layer loading method was applied to simulate the buildability test for 3D concrete printing and its applicability was examined.

Finite Element Analysis of 345kV Transmission Tower considering Nonlinear Factors (비선형인자를 고려한 345kV 송전철탑의 유한요소해석)

  • Kim, Jong-Min;Chang, Jin-Won;Park, Jong-Sup;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.337-340
    • /
    • 2008
  • There were two transmission tower collapses due to Typhoon 'Maemi' in 2003. The reason that a collapse was happened was excessive wind load. One was buckled in the leg part and the other was buckled in the middle bracing part. To investigate a steel transmission tower failure mechanism, 2nd order nonlinear analysis should be performed. Considering the effect of initial imperfection and theresidual stress of angle section during nonlinear analysis, this study can estimate the ultimate strength and the ultimate behavior of the transmission tower.

  • PDF

A Experimental Study on the Control of Premature Failure of RC Beams strengthened by Steel Plates (강판으로 보강된 RC보의 조기파괴제어에 관한 실헙적 연구)

  • 심종성;한만엽;김규선;이인범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.585-591
    • /
    • 1998
  • In the case of reinforced concrete beams strengthening by steel plate, sometimes these beams collapse due to the stress concentration at the ends of steel plates before the design expected failure. This kind of failure is called premature failure. This study analyzes the behavior of strengthened RC beams to control premature failure of these plated beams with either changing the geometries at the ends of plates or strengthening steel plates beside the ends. The results from the former cases show that, the effect of expanded plates sections at the ends was very small, and the beams which are rounded the ends of plates effectively increased the initial rip-off loads about 14% compared with control beam but the ultimate loads was almost same. However, the beams in the latter cases effectively increased the initial and the ultimate rip-off loads with changing failure mode, especially around 14~19% in the ultimate rip-off load comparing with control beam.

  • PDF

A Viscoelastic Analysis for Spent Pressurized Water Reactor Nuclear Fuel Disposal Canister (가압경수로 고준위폐기물 처분용기에 대한 점탄성 해석)

  • 권영주;하준용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.327-330
    • /
    • 2003
  • In this paper, a viscoelastic structural analysis for the spent pressurized water reactor(PWR) nuclear fuel disposal canister is carried out to predict the collapse of the canister while the canister is stored in a deep repository for long time. There may exist some subterranean heat in a deep repository while the nuclear fuel disposal canister is stored for long time. Then, a time-dependent viscoelastic structural deformation may occur in the canister due to the subterrnean heat Hence, the viscoelastic stress variation according to time should be computed to predict the structural strength of the canister. A viscoelastic material model is adopted. Analysis results show that even though some subterrnean heat may exist for quite a long time, the canister structure still endures stresses below the yield strength of the canister. Hence, some subterranean heat cannot seriously affect the structural strength of the canister.

  • PDF

Composite Action in Masonry Columns Due to Damage and Creep Interaction (손상과 크리프의 상호작용에 의한 조적조 기둥의 복합거동)

  • Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • Since the collapse of historical masonry structures in Europe in the late 1990's, the interests in understanding the long-term effect of masonry under sustained compressive stresses have increased. That requires combining the significance of time-dependent effects of creep with the effect of damage due to overstress to realize the evolution of cracks and then failure in masonry. Meanwhile, composite analysis of masonry columns was proven effective for realizing ultimate strength capacity of masonry column. In this study, a simplified mechanical model with step-by-step in time analysis was proposed to incorporate the interaction of damage and creep to estimate the maximum stress occurred in masonry. It was examined that the interaction of creep and damage in masonry can accelerate the failure of masonry.

Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles

  • Banovic, Ivan;Radnic, Jure;Grgic, Nikola
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.103-117
    • /
    • 2020
  • The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.

Analytical Technique on CFTA Girder Bridge Considering Construction Sequence (시공단계를 고려한 CFTA 거더교의 해석기법)

  • Park, Seung-Jae;Kim, Yong-Jae;Jeon, Jong-Su;Park, Myoung-Gyun;Park, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.167-168
    • /
    • 2009
  • The CFT structure is applied to newly developed CFTA girder because of improvement of ductility deformation, stiffness and internal force of structure owing to the interaction between steel tube and core concrete. CFTA girder is the structure which can reduce tensile stress due to external loads by using its arch shape and prestress force. This paper proposed constructional stage procedure and represented analytical technique considering constructional stage to investigate the safety against bridge collapse on construction and on operation.

  • PDF

Effect of Wire Bracing to Snow Load Acting on Vinyl House Frame (적설하중이 작용하는 비닐하우스 골조에 대한 강선보강효과)

  • Jung, Dong-Jo;Teng, Chhay
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.3
    • /
    • pp.27-34
    • /
    • 2010
  • Unbraced vinyl house frame that is economically installed is certainly easy to collapse under the influence of excess snow load. To make it more cheaply in putting up as well as more efficiently in withstanding the applied snow load, it is essential to insert additional bracing into the existing unbraced vinyl house frame. On the other hand, there are varieties of possible bracing shapes that can be formed. However, their efficiencies are different. Therefore, it is important to identify the most effective bracing shape. In this study, 2 different kinds of bracing shapes, horizontal and inclined bracing, are used to additionally install in the ordinary single frames in order to show the effect of the bracing resisting the applied snow load and compare the bending moment, axial force, combined stress and vertical displacement of the vinyl house frame.

A Failure of disturbed natural-slope ground caused by cutting slope (절토에 의한 상부자연지반의 붕괴 특성 연구)

  • Nah, Kwang-Hee;Chang, Buhm-Soo;Shin, Chang-Gun;Kim, Yong-Soo;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.629-634
    • /
    • 2004
  • When it was a localized torrential downpour last year, a natural-slope fell down above a cut-slope. They were caused that stress was opened by cutting slope, ground water level rose quickly and a ground mass strength fell etc. So volume of ground mass increase because of that reasons, finally the disturbed ground was collapse. Therefore I suggest that safety of a natural-slope is a consideration, when a cut-slope is made by cutting ground.

  • PDF

A Methodolody of Considering the Failure of Supports in Evaluating Tunnel Safety Factors (터널의 안전율 평가 시 지보재 파괴 고려 방안 연구)

  • You Kwang-Ho;Hong Keun-Young;Park Yeon-Jun;Lee Hyun-Koo;Kim Jea-Kwon
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-224
    • /
    • 2005
  • The safety factor of a tunnel considering the failure of supports is important because the failure of supports might cause the collapse of the tunnel. In the previous studies, shotcrete was modelled as beam elements and the failure of the shotcrete was checked according to the allowable working stress concept. In this study, shotcrete was modelled by both beam elements and continuum (elasto-plastic) elements. Safety factors of tunnels were estimated by two dimensional numerical analysis with varying rock mass class, coefficient of lateral pressure, thickness of shotcrete, rock bolt reinforcement and excavation method. Also the study suggested not only a proper amount of supports but also modelling method.

  • PDF