• Title/Summary/Keyword: Stress Climate change

Search Result 201, Processing Time 0.027 seconds

The Effects of Climate Factors on the Tree Ring Growth (기후인자가 임목의 연륜생장에 미치는 영향)

  • Yoon, Mihae;Lee, Woo-Kyun;Kim, Moonil
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.255-267
    • /
    • 2013
  • This study aims to reveal the relationship between major climatic factors and radial growth in Siu-ri, NamYangJuSi, Kyeonggido. To identify tree growth responses to climatic variation, we used correlation analysis after standardization and cross-dating of tree ring growth. We use the climatic data(monthly mean, minimum, maximum temperature and precipitation) from September of previous year to August of current year. In terms of relationship between mean, minimum, maximum temperature and tree ring growth, negative correlations were observed in September and October of the previous year. In case of Quercus mongolica, negative relationship were appeared in December of the previous year, January and February of present year. When it comes monthly maximum temperature, August and September of present year was negatively correlated with radial growth in the case of Pinus densiflora. We can conclude that reduced soil moisture due to high temperatures causes a water stress that stunts tree growth. In contrast, there are positive correlations in March of present year. These results suggest that high temperatures in March appear to prolong the growing season. Growth was positively correlated with precipitation from October to December of previous year and from May to September of present year. The results suggest that the smooth water supply from precipitation can promote the tree growth.

Chlorophyll a Fluorescence Response to Mercury Stress in the Freshwater Microalga Chlorella Vulgaris (담수산 클로렐라(Chlorella vulgaris)의 수은 스트레스에 대한 엽록소형광 반응)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.705-715
    • /
    • 2013
  • The response of the freshwater microalga Chlorella vulgaris to mercuric ion ($Hg^{2+}$) stress was examined using chlorophyll a fluorescence image analysis and O-J-I-P analysis as a way to monitor the toxic effects of mercury on water ecosystems. The levels of photosynthetic pigments, such as chlorophyll a and b and carotenoids, decreased with increasing $Hg^{2+}$ concentration. The maximum photochemical efficiency of photosystem II(Fv/Fm) changed remarkably with increasing $Hg^{2+}$ concentration and treatment time. In particular, above $200{\mu}M\;Hg^{2+}$, considerable mercury toxicity was seen within 2 h. The chlorophyll a fluorescence transient O-J-I-P was also remarkably affected by $Hg^{2+}$; the fluorescence emission decreased considerably in steps J, I, and P with an increase in $Hg^{2+}$ concentration when treated for 4 h. Subsequently, the JIP-test parameters (Fm, Fv/Fo, RC/CS, TRo/CS, ETo/CS, ${\Phi}_{PO}$, ${\Psi}_O$ and ${\Phi}_{EO}$) decreased with increasing $Hg^{2+}$ concentration, while N, Sm, ABS/RC, DIo/RC and DIo/CS increased. Therefore, a useful biomarker for investigating mercury stress in water ecosystems, and the parameters Fm, ${\Phi}_{PO}$, ${\Psi}_O$, and RC/CS can be used to monitor the environmental stress in water ecosystems quantitatively.

Sonographer's Job Stress and its Effects on Job Satisfaction: Focused on Busan and Ulsan (초음파 검사자의 직무 스트레스가 직무만족도에 미치는 영향: 부산, 울산지역을 중심으로)

  • Yang, Sung-Hee;Lee, Jin-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.263-271
    • /
    • 2017
  • The purpose of this study was to investigate the relationship between general characteristics, job stress and job satisfaction of 150 sonographer working in Busan and Ulsan area and to identify the predictors of job satisfaction. As a result, the higher the age, experienced job change, the more job satisfaction increased. The sub-factors of job stress and job satisfaction are significantly negative correlated with organizational system, lack of reward, occupational climate, job insecurity, insufficient job control, job demand. The most influential variables in job satisfaction were organizational system and lack of reward. Therefore in order to increase the job satisfaction of the sonographer, it is important to establish and institutional device related to effective organization, manpower management and compensation to reduce job stress.

Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.)

  • Kim, Hyo Chul;Song, Kitae;Moon, Jun-Cheol;Kim, Jae Yoon;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.432-440
    • /
    • 2019
  • Global climate change exerts adverse effects on maize production. Among abiotic stresses, drought stress during the tasseling stage (VT) can increase anthesis-silking intervals (ASI) and decrease yield. We performed an evaluation of ASI and yield using a drought-sensitive line (Ki3) and a drought-tolerant line (Ki11) to analyze the correlation with ASI and yield. Moreover, the de novo data of Ki11 were analyzed to find putative novel transcripts related todrought stress in tropical maize. A total of 182 transcripts, with a log2 ratio >1.5, were found by comparing drought conditions to a control. The top 40 transcripts of high expression levels in the de novo analysis were selected and analyzed with PCR. Of the 40 transcripts, six novel transcripts were detected by quantitative real-time PCR (qRT-PCR) using seedling and VT stage samples. Five transcripts (transcripts_1, 12, 34, 35, and 40) were up-regulated in the Ki11 shoot at seedling stage, and transcripts_1, 12, and 40 were up-regulated at the re-watering stage after 12 h of drought stress. The transcripts_32 and 34 were up-regulated at the VT stage. Hence, transcript_34 possibly plays a significant role in drought tolerance during the seedling and VT stages. The transcript_32 was identified as chloramphenicol acetyltransferase (CAT) by Pfam domain analysis. The function of the other transcripts remained unknown. Further characterization of these novel transcripts in genetic regulation will be of great value for the improvement of maize production.

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

Thermo-physiological Responses by Presence of Vents and Difference in Clothing Length for Construction Site Working Clothes (통기구 유무와 옷 길이 차이에 따른 건설현장 작업복의 온열생리반응)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • This study examined thermo-physiological responses according to the design change of construction site working clothes (control (C) working clothes; prototype (P) working clothes). We measured rectal temperature, skin temperature, micro-climate within the clothes and sweat rate. In the evaluation of physiological functionality, based on pattern improvement in working clothes, P working clothes showed significantly lower rectal temperatures, trunk and thigh skin temperatures than C working clothes. It is preferable that rectal temperature should be kept low during work that is not favorable to an increase in body temperature. P working clothes were more physiologically functional than C working clothes. In addition, P working clothes showed significantly lower temperatures in the trunk and thigh parts in a micro climate temperature. We could explain that the side seam zipper on the pants and the gusset on armpit parts create an air permeability effect of lowering the temperature of micro-climate. Aggressive ventilation through the slit of the garment is an important factor for the restoration of the physiological function of the worker at rest between work. Sweat rate showed a higher level in C working clothes than P working clothes. When working in a hot environment, workwear needs to be designed so that the worker is not exposed to thermal stress. Therefore, it was evaluated that the P work clothes used in this study alleviated the physiological burdens of heat.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Corn Growth and Development influenced by Potential CO2 Leakage from Carbon Capture and Storage (CCS) Site (지중저장 이산화탄소의 잠재적 누출 모사에 따른 옥수수 초기 반응 및 생장 연구)

  • Kim, You Jin;Chen, Xuanlin;He, Wenmei;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • Carbon capture and storage (CCS) technology has been suggested as an ultimate strategy for mitigating climate change. However, potential leakage of $CO_2$ from the CCS facilities could lead to serious damage to environment. Plants can be a bio-indicator for $CO_2$ leakage as a cost-effective way, although plants' responses vary with plant species. In this study, a greenhouse experiment was conducted to investigate the relation between the $CO_2$ tolerance of corn species and the initial physiological responses to the elevated soil $CO_2$ concentration. Treatment groups included CI (99.99% $CO_2$ gas injection) and BI (no gas injection). Mean soil $CO_2$ concentration for the CI treatment was 19.5~39.4%, and mean $O_2$ concentration was 6.6~18.4%. The soil gas concentrations in the BI treatment were at the ambient levels. In the CI treatment, chlorophyll content was not decreased until the $13^{th}$ day of the $CO_2$ injection. On the $15^{th}$ day, leaf starch content and stomatal conductance were increased by 89% and 25% in the CI treatment compared to the BI treatment, respectively. This might be due to the compensatory reaction of corn to avoid high soil $CO_2$ stress. However, the prolonged $CO_2$ injection decreased chlorophyll content after 13 days. After $CO_2$ injection, plant biomass was reduced by 25% in the CI treatment compared to the BI treatment. Due to the inhibited root growth, leaf phosphorous and potassium contents were decreased by 54% on average in the CI treatment. This study indicates that corn has a high tolerance to soil $CO_2$ concentration of 30% for 2 weeks by its compensatory reactions such as an maintenance of chlorophyll content and an increase in stomatal conductance.

Evaluation of Thermal Environments during the Heat Waves of Summer 2013 in Busan Metropolitan Area (2013년 부산지역 폭염사례일의 열쾌적성 평가)

  • Kim, Young-Jun;Kim, Hyunsu;Kim, Yoo-Keun;Kim, Jin-Kuk;Kim, Yeon-Mai
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1929-1941
    • /
    • 2014
  • Now a days, frequency of abnormally high temperatures like heat wave by global warming and climate change is increasing constantly and the number of patient with heat related illness are jumping rapidly. In this study, we chose the case day for the heat wave in Busan area(Busan and Yangsan), 2013 which it was the most hottest year during 21th century. And then, we analysed the weather condition using automatic synoptic observing system(ASOS) data. Also, four indices, heat index(HI), wet bulb globe temperature(WBGT), Man-ENvironment heat EXchange model(MENEX)'s results like Physiological subjective temperature(PST), Physiological strain(PhS), were calculated to evaluate the thermal comfort and stress quantitatively. However, thermal comfort was different as the each station and thermal comfort index during same time. Busan's thermal indices (HI: hot, WBGT: sweltering, PST: very hot, PhS: very hot) indicated relatively higher than Yansan's (HI: very hot, WBGT: sweltering, PST: very hot, PhS: sweltering). It shows that Busan near coast is relatively more comfortable than Yangsan located in inland.

ENSO Response to Global Warming as Simulated by ECHO-G/S (ECHO-G/S에 나타난 기후변화에 따른 엘니뇨 변화 특성 분석)

  • Lee, Hyo-Shin;Kwon, Won-Tae;Ahn, Joong-Bae;Boo, Kyung-On;Ch, Yu-Mi
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.365-379
    • /
    • 2007
  • Global warming may shift the properties and dynamics of ENSO. We study the changes in ENSO characteristics in a coupled general circulation model, ECHO-G/S. First, we analyse the mean state changes by comparing present day simulation and various high $CO_2$ climates. The model shows a little El Nino-like changes in the sea surface temperature and wind stress in the eastern tropical Pacific. As the mean temperature rises, the ENSO amplitude and the frequency of strong El Ninos and La Nina decrease. The analysis shows that the weakening of the oceanic sensitivities is related to the weakening of ENSO. In addition to the surface changes, the remote subsurface sea temperature response in the western Pacific to the wind stress in the eastern Pacific influences the subsequent ENSO amplitude. However, ENSO amplitude does not show linear response to the greenhouse gas concentrations.