• Title/Summary/Keyword: Stress Based Evaluation

Search Result 858, Processing Time 0.029 seconds

Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress (가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.

Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

  • Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a "universal index," which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint (용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

An Evaluation of Residual Stress Redistribution in the Welding Residual Stress Field Caused by Fatigue Crack Propagation by Finite Element Method (용접잔류응력장에서 피로균열의 전파에 따른 잔류응력 재분포에 대한 해석적 평가)

  • Park, Eung-Joon;Kim, Eung-Joon
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.92-96
    • /
    • 2008
  • An investigation was performed to predict residual stress redistribution for the crack propagation initially through tensile residual stress field. The analytical method, which is based on Dugdale model by finite element analysis using elastic analysis method considering the superposition principle, was proposed to estimate the redistribution of residual stress caused by crack propagation. The various aspect of distribution of residual stress caused by crack propagation was examined based on the configuration change of specimen. The analysis results show that the aspect of redistribution of residual stress caused by crack propagation depends on the width of the specimen provided that the initial distribution of residual stress is identical.

The Effect of Shot Peening on the Bending Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics (파괴역학을 기초로 한 침탄치차의 굽힘강도에 미치는 쇼트피닝(Shot Peening)의 효과에 관한 연구)

  • S.K.Lyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.512-521
    • /
    • 1997
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a car¬burized gear tooth and its application to the fatigue crack propagation problem. The residual stress is estimated based on the assumption that the main cause of residual stress is the volume difference between the case and core due to martensitic transformation in cooling, and the influ¬ence of both the reduction of retained austenite and the strain in the surface layer induced by shot peening are considered. The reliability of the method is examined by comparison with stresses measured by the X-ray diffraction method. The stresses intensity factors are computed by the influence function method and the reduction of the factor due to the residual stress is demonstrat¬ed and discussed based on the fracture mechanics.

  • PDF

Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

  • Kim, Seong-Min;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.10-24
    • /
    • 2015
  • This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

Structural Safety Evaluation of Stabbing System for Pre-Piling Jacket Substructure Considering Pile Construction Errors (파일의 시공오차를 고려한 스태빙시스템의 구조안전성 평가)

  • Youngcheol Oh;Jaeyong Ryoo;Daeyong Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.109-119
    • /
    • 2023
  • A structural safety evaluation was conducted for the stabbing system for the pre-piling jacket substructure currently being developed in South Korea, considering pile construction errors due to its lateral movement that may occur during construction in the ocean. Based on (1) the maximum stress generated by the stabbing system, (2) the maximum rotational displacement of the guide cone, and (3) the maximum stress generated by the horizontal hydraulic pressure cylinder, the structural safety of the stabbing system was examined under the initial loading condition and three possible load combinations during its construction. In order to evaluate the structural safety of the stabbing system, a concept of stress safety factor (= Yield stress / Max. Von-Mises stress) was used. It was found that the stabbing system considered in this study has a sufficient margin of safety.

A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections (강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구)

  • Park, Yong Myung;Chang, Won Je;Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.505-517
    • /
    • 2004
  • This paper presented equations on the stress evaluation of steel frame pier connections that were composed of a box beam and a circular column. The existing equations, which transformed the circular column into an equivalent box column had some problems; they underestimated a shear lag stress as the joint angle decreased, and overestimated a shear stress as the joint angel increased. Therefore, FE analyses were performed with various parameters, such as joint angle(${\alpha}$), span length-width ratio(L/B), and circular column-to-box beam stiffness ratio(${\alpha}$), and new equations on stress evaluation were proposed based on FE analyses. Furthermore, material and geometric nonlinear analyses were performed to estimate ultimate strength and to confirm the validity of the proposed equations.