• Title/Summary/Keyword: Streptozotocin-hyperglycemia

Search Result 143, Processing Time 0.025 seconds

The Effects of steam heat processing of Helianthus tuberosi Rhizoma on Blood glucose lowering (국우(菊芋) 증자가 혈당강하작용에 미치는 영향)

  • Kim, Jin-Woo;Ha, Mi-Ae;Shin, Yong-Wook
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.39-46
    • /
    • 2017
  • Objective : This study was designed to evaluate the hypoglycemic effects of Helianthus tuberosi Rhizoma extracts and its optimum Heat processing conditions Methods : We investigated the Salivary ${\alpha}$-amylase, pancreas ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibitory activities of extracts from Steam Heated Helianthus tuberosi Rhizoma Ext. The inhibitory activities of a 50% EtOH extract of Steam Heated Helianthus tuberosi Rhizoma Ext against ${\alpha}$-glucosidases were evaluated in this study. Inhibiting these enzymes involved in the absorption of disaccharides significantly decreases the postprandial increase in blood glucose level after a mixed carbohydrate diet. Furthermore, the postprandial blood glucose lowering effect of Steam Heated Helianthus tuberosi Rhizoma Ext. was compared to a known type 2 diabetes drug(Acarbose(R)) in a mice model. Steam Heated Helianthus tuberosus L. Ext significantly reduced the blood glucose increase after glucose loading. Results : The results were confirmed by real-time PCR that after treated with Streptozotocin in L6 cells, induced expression of GLUT4, after the steamed Helianthus tuberosus L. Ext. treated, observed its expression was increased. Steam Heated Helianthus tuberosus L Ext treated 4 hours in L6 cells, cytotoxicity was measured in MTT assay. Its toxicity were 5.7%, 9% and 11.3% at the treatment concentration $12.5{\mu}g/m{\ell}$, $25{\mu}g/m{\ell}$, the $50{\mu}g/m{\ell}$ respectively. Conclusions : Overall, the results of this study indicate that Hypoglycemic effect of Helianthus tuberosi Rhizoma caused by the Steam heat treatment, the optimum Heat processing condition is steamming at $121^{\circ}C$ for 30 min, and it will provide the basis for developing a useful dietary supplement for controlling postprandial hyperglycemia.

Effects of Herbal Complex on Blood Glucose in Streptozotocin-induced Diabetic Rats and in Mice Model of Metabolic Syndrome (생약복합제의 Streptozotocin 유발 당뇨 및 대사성증후군 모델 동물에서의 혈당에 미치는 효과)

  • Park, Han-Seok;Lee, Yeon-Sil;Choi, Se-Jin;Kim, Jin-Kyu;Lee, Yun-Lyul;Kim, Hyun-Gwen;Koo, Sam-Hoi;Ku, Dae-Hoy;Ki, Seung-Il;Lim, Soon-Sung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.3
    • /
    • pp.196-204
    • /
    • 2009
  • This study was carried out to investigate the in vivo and in vitro inhibitory effect of a traditional herbal complex (HC) extract prepared from a mixture of four oriental herbs (Dioscorea Rhizoma, Glycine soja Sieb. et Zucc, Bombycis corpus, Fermented Glycine soja) that have been widely used for the treatment and prevention of diabetes mellitus on hyperglycemia. The water extract of HC showed potent inhibitory effect on $\alpha$-glucosidase with $IC_{50}$ value of 1.24 mg/mL. Additionally, the ethanol extract of HC was also found to exhibit significant inhibitory effect against protein tyrosine phosphatase $1{\beta}$ ($PTP1{\beta}$), which is known as a major regulator of both insulin and leptin signaling. In the $PTP1{\beta}$ inhibitory assay, the most active n-hexane fraction obtained from the ethanol extract of HC, was identified as a mixture of fatty acid derivatives by gas chromatography-mass spectrometry (GC-MS). In high-fat diet-low dose streptozotocin (STZ)-induced diabetic rat, the water extract of HC improved the oral glucose intolerance as compared with rosiglitazone. HC also caused a marked decrease of body weight and fasting blood glucose and a significant improvement on glucose tolerance in metabolic syndrome mice model. These findings support that this traditional HC may be useful in the control of blood glucose in diabetes mellitus and metabolic syndrome.

The Effects of Saururus chinensis Baill Extract Administration on the Blood Glucose, Electrolyte and Lipid Metabolism in STZ-Induced Hyperglycemic Rats (Streptozotocin 유도 당뇨성 흰쥐의 혈당, 전해질 및 지질대사에 삼백초 추출액이 미치는 영향)

  • Kim, Han-Soo
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.911-918
    • /
    • 2006
  • The purpose of this study was to observe the effects of the feeding physiological activity substance in Saururus chinensis Baill extract on the improvement of the blood glucose, electrolyte (Na, K, CI) concentration and lipid metabolism in the serum of streptozotocin (STZ, 55 mg/kg B.W., I.P. injection)-induced hyperglycemic rats fed the experimental diets for 5 weeks. Concentrations of blood glucose, total cholesterol, atherosclerotic index, LDL, LDL-cholesterol, free cholesterol, cholesteryl ester ratio, triglyceride (TG) and phospholipid (PL) in serum were significantly higher in the hyperglycemic group (group NSW), STZ (I.P.)+Saururus chinensis Baill leaf 3.5 g% extract group (group NSSL) and STZ (I.P.)+Saururus chinensis Baill root 3.5 g% extract group (group NSSR) than those in the control group (group Normal, basal diet+water). But the concentrations of blood glucose, total cholesterol, atherosclerotic index, LDL, LDL-cholesterol, free cholesterol, cholesteryl ester ratio, TG and PL in serum were remarkably lower in the groups NSSL and NSSR than those in the NSW, whereas the ratio of HDL-cholesterol concentration to total cholesterol and HDL-cholesterol concentration in the groups NSSL and NSSR were significantly higher than in the group NSW. Electrolyte and creatinine concentrations in serum were significantly lower in the groups NSSL and NSSR than those in the group NSW. The activities of aminotransferase (AST, ALT), creatine phosphokinase (CPK), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) in serum were remarkably lower in the groups NSSL and NSSR than in the hyperglycemic group NSW. However, no significance was found in the comperative effect of the groups NSSL and NSSR. From the above results, it was suggested that Saururus chinensis Baill was effective in the improvement of the blood glucose, electrolyte, glucide and lipid metabolism in serum of STZ-induced hyperglycemic rats.

Inhibitory activity of Euonymus alatus against alpha-glucosidase in vitro and in vivo

  • Lee, Soo-Kyung;Hwang, Ji-Yeon;Song, Ji-Hyun;Jo, Ja-Rim;Kim, Myung-Jin;Kim, Mi-Eun;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.1 no.3
    • /
    • pp.184-188
    • /
    • 2007
  • The major goal in the treatment of diabetes mellitus is to achieve near-normal glycemic control. To optimize both fasting blood glucose and postprandial glucose levels is important in keeping blood glucose levels as close to normal as possible. ${\alpha}-Glucosidase$ is the enzyme that digests dietary carbohydrate, and inhibition of this enzyme could suppress postprandial hyperglycemia. The purpose of this study was to test the inhibitory activity of methanol extract of Euonymus alatus on ${\alpha}-glucosidase$ in vitro and in vivo to evaluate its possible use as an anti-diabetic agent. Yeast ${\alpha}-glucosidase$ inhibitory activities of methanol extract of E. alatus were measured at concentrations of 0.50, 0.25, 0.10, and 0.05 mg/ml. The ability of E. alatus to lower postprandial glucose was studied in streptozotocin-induced diabetic rats. A starch solution (1 g/kg) with and without E. alatus extract (500 mg/kg) was administered to diabetic rats by gastric intubation after an overnight fast. Plasma glucose levels were measured at 30, 60, 90, 120, 180, and 240 min. Plasma glucose levels were expressed in increments from baseline, and incremental areas under the response curve were calculated. Extract of E. alatus, which had an $IC_{50}$ value of 0.272 mg/ml, inhibited yeast ${\alpha}-glucosidase$ activity in a concentration-dependent manner. A single oral dose of E. alatus extract significantly inhibited increases in blood glucose levels at 60 and 90 min (p<0.05) and significantly decreased incremental response areas under the glycemic response curve (p<0.05). These results suggest that E. alatus has an antihyperglycemic effect by inhibiting ${\alpha}-glucosidase$ activity in this animal model of diabetes mellitus.

The Hypoglycemic Effect of Saururus chinensis Baill in Animal Models of Diabetes Mellitus

  • Joo, Hee-Jeong;Kang, Ming-Jung;Seo, Tae-Jin;Kim, Hyun-A;Yoo, Sung-Ja;Lee, Soo-Kyung;Lim, Hwa-Jae;Byun, Boo-Hyeong;Kim, Jung-In
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.413-417
    • /
    • 2006
  • The purpose of this study was to investigate the hypoglycemic effect of Saururus chinensis Baill in vitro and in vivo. Methanol extract of S. chinensis Baill inhibited yeast ${\alpha}$-glucosidase activity by 49.8%, which was twice as strong as that of acarbose at a concentration of 0.5 mg/mL in vitro. The effect of S. chinensis Baill methanol extract on the postprandial increase in blood glucose levels was studied in streptozotocin-induced diabetic rats using a carbohydrate load test. Oral administration of S. chinensis Baill extract (500 mg/kg) significantly decreased incremental blood glucose levels at 60 and 90 min (p<0.05) after oral ingestion of starch (1 g/kg). The area under the glucose response curve of the S. chinensis Baill group was significantly decreased compared to that of the control group (p<0.05). The effect of prolonged feeding of S. chinensis Baill was studied in an animal model of type 2 diabetes. Three-week-old db/db mice were fed an AIN-93G diet or a diet containing 0.5% S. chinensis Baill extract for 7 weeks after 1 week of adaptation. Plasma glucose, insulin, and blood glycated hemoglobin levels of the mice fed S. chinensis Baill extract were significantly lower than those of the control group (p<0.05). Therefore, we conclude that S. chinensis Baill is effective in controlling hyperglycemia in animal models of diabetes mellitus.

ᴅ-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

  • Kim, Eunju;Kim, Yoo-Sun;Kim, Kyung-Mi;Jung, Sangwon;Yoo, Sang-Ho;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. $\small{D}$-xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of $\small{D}$-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS: Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with $\small{D}$-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with $\small{D}$-xylose. These groups were maintained for two weeks. The effects of $\small{D}$-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic ${\beta}$-cells were analyzed. RESULTS: In vivo, $\small{D}$-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. $\small{D}$-xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of $\small{D}$-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with $\small{D}$-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS: In this study, $\small{D}$-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, $\small{D}$-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by ${\beta}$-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D.

Skin elasticity improvement effect of Young persimmon and Heated young persimmon by decreased Advanced glycation end products(AGEs) (떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과)

  • Kim, Soo Hyun;Lee, AhReum;Kim, SuJi;Kim, Kyeong Jo;Kwon, Ojun;Choi, Joon Young;Koo, Jin Suk;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • Objectives : Advanced glycation end products (AGEs) is bind formation of glucose and protein. Acceleration of AGE formation during hyperglycemia is associated with the pathogenesis of diabetic complications and causes kidney and skin damage. The aim of this study was investigated the AGEs inhibitory activity and antioxidant activity of water extracts from young persimmon (YP) and heated young persimmon (HYP). Methods : Paeoniae Radix Alba (YP) is prepared by heating with 30% ethanol. AGEs formation inhibitory activities of YP and HYP measured using bovine serum albumin. To evaluate the protective effects of YP and HYP in diabetic rats induced with streptozotocin (STZ) and methyl glyoxal (MGO), SD rats were distributed into four groups; normal mice (Nor), AGEs-induced rats (Con), AGEs-induced rats treated with 100 mg/kg YP (YP), AGEs-induced rats treated with 100 mg/kg heated YP (HYP) for 3weeks. Heated young persimmon respectively decrease AGEs construction. Results : YP and HYP administration inhibited the biomarkers of AGEs in serum, kidney and skin tissues. AGE-induced rats revealed that the significant decreased collagen however, heat processing methods of young persimmon up regulated inhibits AGEs-induced collagen decrease. The expressions of AGEs were decreased in YP and HYP treated group compared with the control group in tissues. It specifies that HYP has potential to serve as a positive regulator of via AGEs path way. Conclusion : It has proposed that may have an improvement effect on diabetic complications, heated young persimmon has AGEs inhibitory excellent activities and antioxidant effect.

Effects of coffee powder supplementation on the blood glucose and antioxidative enzyme activity of liver tissue in STZ-induced diabetic rats (커피가루 첨가식이가 당뇨 쥐의 혈당 및 간 조직 항산화효소 활성에 미치는 영향)

  • Bae, Jihyun;Jung, Yun-Jung;Choi, Mi-Ja
    • Journal of Nutrition and Health
    • /
    • v.48 no.2
    • /
    • pp.140-148
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the role of coffee in diabetic rats in order to prevent hyperglycemia and hyperlipidemia, and to improve antioxidant enzyme activity in streptozotocin induced diabetic rats. Methods: Thirty two male Sprague-Dawley rats (body weight $200{\pm}5g$) were divided into two groups; diabetic and nondiabetic groups. The groups were each randomly divided into two subgroups; fed control and coffee (5 g coffee powder/kg diet) diets. Diabetes was induced by intramuscular injection of 50 mg streptozotocin/kg body weight. Rats with blood glucose concentrations ${\geq}300mg/dL$ were considered diabetic for these experiments. All rats were fed an experimental diet and deionized water ad libitum for 4 weeks. Results: The results of this study indicate that body weight gain was significantly lower in diabetic groups than in nondiabetic groups regardless of diet. Mean food intake was significantly higher in diabetic groups than in nondiabetic groups, and significantly higher in the coffee group than in the control group in diabetic rats. Food efficiency ratio (FER) was significantly lower in diabetic groups than in nondiabetic groups regardless of diet. The fasting blood glucose of coffee supplemented groups was significantly lower compared with the control group in diabetic and nondiabetic rats. The levels of serum LDL-cholesterol and atherogenic index were significantly lower in the coffee group than in the control group in diabetic and nondiabetic rats, and serum HDL-cholesterol was significantly higher in the coffee group than in control groups. The contents of hepatic triglyceride were significantly lower in the coffee group than in the control group in diabetic and nondiabetic rats. The lipid peroxidation of malondialdehyde (MDA) contents was significantly lower in the coffee group than in the control group in diabetic and nondiabetic rats. Activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase in liver was not significantly different by experimental diets among all groups. Conclusion: In conclusion, effects of 0.5% coffee powder supplemented diet were beneficial on blood glucose and lipids in diabetic rats.

Blockade of Thromboxane Influences Does Not Affect Renal Blood Flow Deficit in Anesthetized Diabetic Rats (마취된 당뇨 흰쥐의 신혈류량 감소에 관여하는 기전 : 내인성 쓰롬복산계의 무관성)

  • Ha, Hun-Joo;Dunham, Earl W.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.221-232
    • /
    • 1988
  • Studies were conducted to determine whether reduced renal blood flow (RBF) exhibited by rats with uncontrolled, streptozotocin (STZ)-induced diabetes is attributable to diabetes-associated, enhanced renal vasoconstrictor influence of endogenous thromboxane $(TX)A_2$. Rats which were injected with STZ after pretreatment with 3-O-methyl glucose (3OMG), an agent which prevents STZ-induced hyperglycemia, were also studied. Basal values of total RBF (RBF; ml $min^{-1}$ $gKw^{-1}$; electromagnetic flow probe), systemic arterial pressure (BP; mm Hg) and renal vascular resistance (RVR;BP $RBF^{-1})$in pentobarbital-anesthetized rats during a control period were $5.9{\pm}0.3$(P<0.1_{VS}. CR), $115{\pm}3$ and $20.3{\pm}1.0$(P<0.1_{VS}. CR) for STZR (n=15), and $8.4{\pm}0.4$, $123{\pm}3$ and $15.1{\pm}0.8$ for age-matched control rats (CR; n= 15), respectively. Basal values of RBF, BP and RVR in 3OMG pretreated STZR were identical to CR. In preparations shown capable of renal vasodilatation, OKY 1581 (1 mg/kg, i.v. followed by 0.4 mg/kg min infusion) abolished arachidonate-induced $(TX)A_2$ synthesis, but did not alter basal BP, RBF or RVR in either STZR or CR (n=4/group). Similarly, i.r.a. infusion of SQ29548 (100 ng/ml RBF) abolished renal vasoconstriction induced by a TX/prostaglandin endoperoxide mimic, U46619, but had no discern able affect on RVR in either STZR (n=8) or CR (n=8). The data indicates that $TXA_2$ does not participate in the elevated basal RVR of STZR which are associated with the diabetic state.

  • PDF

Effect of Artemisia iwayomogi Ethanol Extract on Hypoglycemic and Antioxidant Activities in Diabetic Rats (더위지기 추출물이 당뇨 흰쥐의 혈당과 항산화 효소 활성도에 미치는 영향)

  • Han, Hye Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1716-1726
    • /
    • 2012
  • This study was undertaken to evaluate the antihyperglycemic, antilipid peroxidative, and antioxidant effects of the ethanol extracts of Artemisia iwayomogi (Ai) in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Sprague-Dawley rats with a single intravenous injection (45 mg/kg b.w.) of STZ. The diabetic rats were then randomized to the diabetic and Ai extract therapy groups which were treated with Ai extract at doses of 1, 2, and 3 g/kg b.w./day, respectively, for 14 days. Oral administration of Ai (2 g/kg b.w.) significantly decreased their intake of food. Dosage of 2 g/kg of the extract significantly decreased blood glucose levels in the glucose level in diabetic rats after 4 day, there was no significant difference observed at 1 and 3 g/kg. A dose of 2 or 3 g/kg of the Ai extract significantly reduced plasma glucose levels in STZ-induced hyperglycemic rats at 7 days. The hypoglycemic effect of Ai at a dose of 2 g/kg was significantly more effective than that of STZ-control. The effect was more pronounced in 2 g/kg than 1 g and 3 g/kg. A significant reduction in triglycerides (TG) and free fatty acids (FFA), and a significant increase in liver glycogen were observed in treated diabetic rats at doses of 2 g/kg after 14 days of treatment. Administration of Ai extracts to diabetic rats showed a significant decrease in liver malondialdehyde (MDA) levels. The activity of superoxide dismutase (SOD) was significantly increased in the 3 g extract-supplemented groups. The activities of glutathione peroxidase (GSH-px) and catalase (CAT) were significantly increased in the 1 g and 3 g extract-supplemented groups. Ai extract significantly increased glutathione-S transferase (GST) activity in a dose-dependent manner compared with treatment in STZ-control rats. Our result supports the fact that the administration of Ai extract is able to reduce hyperglycemia and hyperlipidemia risk, and also reduce the oxidative stress in diabetic rats.