• Title/Summary/Keyword: Streptomyces sp. SCC-2136

Search Result 3, Processing Time 0.023 seconds

Cloning and Expression of Glucose-1-Phosphate Thymidylyltransferase Gene (schS6) from Streptomyces sp. SCC-2136

  • Han, Ji-Man;Kim, Su-Min;Lee, Hyo-Jung;Yoo, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.685-690
    • /
    • 2007
  • The deoxysugar biosynthetic gene cluster of Sch 47554/Sch 47555 was cloned from Streptomyces sp. SCC-2136. One of the ORFs, schS6, appeared to encode glucose-1-phosphate thymidylyltransferase, which converts dTTP and glucose-1-phosphate to TDP-D-glucose and pyrophosphate. The dTDP-D-glucose is a key metabolite in prokaryotics as a precursor for a large number of modified deoxysugars, and these deoxysugars are a maj or part of various antibiotics, ranging from glycosides to macrolides. SchS6 was expressed in E. coli vector pSCHS6 and the expressed protein was purified to apparent homogeneity by ammonium sulfate precipitation and Ni-NTA affinity column chromatography. The specific activity of the purified enzyme increased 4.7-fold with 17.5% recovery. It migrated as a single band on SDS-PAGE with an apparent molecular mass of 56kDa. The purified protein showed glucose-1-phosphate thymidylyltransferase activity, catalyzing a reversible bimolecular group transfer reaction. In the forward reaction, the highest activity was obtained with combination of dTTP and ${\alpha}-D-glucose-1-phosphate$, and only 12% of that activity was obtained with the substrates $UTP/{\alpha}-D-glucose-1-phosphate$. In the opposite direction, the purified protein was highly specific for dTDP-D-glucose and pyrophosphate.

Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC-2136: Cloning, Sequencing, and Characterization

  • Basnet, Devi Bahadur;Oh, Tae-Jin;Vu, Thi Thu Hang;Sthapit, Basundhara;Liou, Kwangkyoung;Lee, Hei Chan;Yoo, Jin-Cheol;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.154-162
    • /
    • 2006
  • The entire gene cluster involved in the biosynthesis of angucyclines Sch 47554 and Sch 47555 was cloned, sequenced, and characterized. Analysis of the nucleotide sequence of genomic DNA spanning 77.5-kb revealed a total of 55 open reading frames, and the deduced products exhibited strong sequence similarities to type II polyketide synthases, deoxysugar biosynthetic enzymes, and a variety of accessory enzymes. The involvement of this gene cluster in the pathway of Sch 47554 and Sch 47555 was confirmed by genetic inactivation of the aromatase, including a portion of the ketoreductase, which was disrupted by inserting the thiostrepton gene.