• 제목/요약/키워드: Streptomyces griseus HUT 6037

검색결과 3건 처리시간 0.017초

Effective Production of Chitinase and Chitosanase by Streptomyces griseus HUT 6037 Using Colloidal Chitin and Various Degrees of Deacetylation of Chitosan

  • Jung, Ho-Sup;Son, Jeong-Woo;Ji, Hong-Seok;Kim, Kwang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.26-31
    • /
    • 1999
  • The advantages of the organism Streptomycs griseus HUT 6037 is that the chitinase and chitosanase using chitinaceouse substrate are capable of hydrolyzing both amorphous and crystalline chitin and chitosan. We attempted to investigate the optimization of induction protocol for high-level production and secretion of chitosanase and the influence of chitin and partially deacetylated chitosan sources (75∼99% deacetylation). The maximum specific activity or chitinase has been found at 5 days cultivation with the 48 hours induction time using colloidal chitin as a carbon source. To investigate characteristic of chitosan activity according to substrate, we used chitosan with various degree of deacetylation as a carbon source and found that this strain accumulates chitosanase in the culture medium using chitosanaceous substrates rather than chitinaceous substrates. The highest chitosanase activity was also presented on 4 days with 99% deacetylated chitosan. The partially 53% deacetylated chitosan can secrete both chitinase and chitosanase which was defined as a soluble chitosan. The specific activities of chitinase and chitosanase were 0.89 at 3 days and 1.33 U/mg protein at 5 days, respectively. It indicate that chitosanase obtained from S. griseus HUT 6037 can hydrolyze GlcNAc-GlcN and GlcN-GlcN linkages by exo-splitting manner. This activity increased with increasing degree of deacetylation of chitosan. It is the first attempted to investigate the effects of chitosanase on various degrees of deacetylations of chitosan by S. griseus HUT 6037. The highest specific activity of chitosanase was obtained with 99% deacetylated chitosan.

  • PDF

Effect of Chitin Sources on Production of Chitinase and Chitosanase by Streptomyces griseus HUT 6037

  • Kim, Kwang;Ji, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.18-24
    • /
    • 2001
  • The advantage of using Streptomyces griseus HUT 6037 in the production of chitinase or chitosanase is that the organism is capable of hydrolyzing amorphous or crystalline chitin and chitosan according to the type of the substrate used. We investigated the effects of the enzyme induction time and chitin sources, CM-chitosan and deacetylated chitosan (degree of deacetylation 75-99%), on production of chitosanase. We found that this strain accumulated chitosanase when cells were grown in the culture medium containing chitosanaceous substrates instead of chitinaceous substrates. The highest chitosanase activity was obtained at 4 dyas of cultivation with 99% deacetylated chitosan. The specific activities of chitinase and chitosanase were 0.91 and 1.33 U/mg protein at 3 and 5 days, respectively. From the study of the enzymatic digestibility of various degrees of deacetylated chitosan, it was found that (GlcN)$_3$, (GlcN)$_4$and (GlcN)(sub)5 were produced during the enzymatic hydrolysis reaction. The results of this study suggested that the sugar composition of (GlcN)$_3$was homogeneous and those of (GlcN)$_4$and (GlcN)(sub)5 were heterogeneous.

  • PDF

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).