• Title/Summary/Keyword: Strengthening existing member

Search Result 21, Processing Time 0.02 seconds

Numerical Analysis on External Strengthening Effects in Aged Structures (사용중인 구조물의 보강효과에 대한 해석적 연구)

  • 신승교;임윤묵;김문겸;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

A Case Study on Earthquake Resistant Reinforcement Method for the Corner of Existing Underground R.C Box Structures using Pre-flexed Member System (프리플렉스 부재를 이용한 기존 철근콘크리트 지중박스구조물 우각부에 대한 내진보강공법 사례연구)

  • Chung, Jee-Seung;Kim, Jin-Gu;Lee, Jin-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.68-74
    • /
    • 2016
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'Pre-flexed member system') is used to improve seismic capacity of the RC box structure. The pre-flexed member system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without strength member system. Numerical results confirmed that the proposed pre-flexed member system can enhance the seismic capacity of the underground RC box structures.

Strengthening Effect of CFRP on the R/C Rahmen Bridge (R/C 라멘교에 적용된 CFRP의 보강효과)

  • 심종성;정영수;윤선원;김규선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.328-333
    • /
    • 1996
  • Concrete can be defective for several reasons, including an inadequate design, material selection of workmanship, failure to appreciate the hazards associated with prevailing enviromental conditions. Concrete can also deteriorate or be damaged in use. Thus, it is necessary to evaluate the safety of existing concrete strucutres. On the basis of these reasons, they must be performed for repair or rehabilitation. Presently, strengthening methods of R/C structure used in Korea, are an enlargement of concrete member, strengthening with steel plate or CFRP on the R/C structure. It has been widely estabilished that strengthening effect of CFRP is superior to steel plate in terms of it's lighter unit weight and higher tensile strength. But there are no construction results of CFRP on the civil R/C structure in Korea. The strengthening design technique with CFRP, it's const겨ction, and it's strengthening effect for deteriorated R/C rahmen bridge is introduced in this paper.

  • PDF

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

An Experimental Study on Shear Strengthening Effect of I-girder using Externally Bonded CFRP Strips (외부 부착 탄소섬유를 사용한 I형 보의 전단 보강 효과 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • Researches on strengthening and rehabilitation methods are being widely conducted due to the deterioration of existing concrete structures. Use of externally bonded Carbon Fiber Reinforced Polymers (CFRP) strips for the rehabilitation is a cost-effective and time-saving method. Generally, the CFRP layout for the shear strengthening was a uni-directional layout. Many researches have focused on the variables of the uni-directional CFRP layout such as the amount of material, angle, and spacing. Pilot tests indicated that the effective confinement of the concrete member can be provided with the bi-directional CFRP layout than the uni-directional layout. Therefore, the test was carried out after the uni- and bi-directional strengthening work using the same amount of CFRP material. CFRP anchors were installed to prevent unexpected premature CFRP delamination failure before reaching CFRP fracture strain. The effectiveness of the CFRP anchor and bi-directional CFRP layout for shear strengthening was verified based on the principal tensile strain contours.

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

Axial Strength of RC Columns Extracted from Existing Apartment Housings (기존 공동주택에서 채취한 철근콘크리트 기둥의 내력특성 평가 연구)

  • You, Young-Chan;Shin, Hyun-Seop;Choi, Ki-Sun;Lim, Byung-Ho;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.100-108
    • /
    • 2010
  • The axial strength of existing RC columns were experimentally investigated in this paper to understand the strength characteristics of existing structural members and to get a appropriate data in strengthening design of RC members in a remodelling construction. Ten RC columns were prepared by being cut and extracted directly from the demolition site of the apartment housings. Each column was tested under uniaxial loadings with different eccentricities in order to evaluate the axial strength of existing RC columns. From the test results, it was found that axial strength of all the specimens were at least 75% higher than those of the theoretical values required by current code. But member displacement ductility ratio were relatively low ranging from 2.12~5.86.

Seismic Capacity Evaluation of Existing Medium-and low-rise R/C Frame Retrofitted by H-section Steel Frame with Elastic Pad Based on Pseudo-dynamic testing (유사동적실험에 의한 탄성패드 접합 H형 철골프레임공법으로 보강 된 기존 중·저층 R/C 골조의 내진성능 평가)

  • Kim, Jin-Seon;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • In this study, to improve the connection performance between the existing reinforced concrete (R/C) frame and the strengthening member, we proposed a new H-section steel frame with elastic pad (HSFEP) system for seismic rehabilitation of existing medium-to-low-rise reinforced concrete (R/C) buildings. This HSFEP strengthening system exhibits an excellent connection performance because an elastic pad is installed between the existing structure and reinforcing frame. The method shows a strength design approach implemented via retrofitting, to easily increase the ultimate lateral load capacity of R/C buildings lacking seismic data, which exhibit shear failure mechanism. Two full-size two-story R/C frame specimens were designed based on an existing R/C building in Korea lacking seismic data, and then strengthened using the HSFEP system; thus, one control specimen and one specimen strengthened with the HSFEP system were used. Pseudodynamic tests were conducted to verify the effects of seismic retrofitting, and the earthquake response behavior with use of the proposed method, in terms of the maximum response strength, response displacement, and degree of earthquake damage compared with the control R/C frame. Test results revealed that the proposed HSFEP strengthening method, internally applied to the R/C frame, effectively increased the lateral ultimate strength, resulting in reduced response displacement of R/C structures under large scale earthquake conditions.

Structural Restoration for the Electric Power Transmission Tower Damaged by Foundation Settlements (기초침하에 의해 손상된 송전철탑 구조물의 구조성능개선)

  • Lee, Ho Beom;Park, Jong Kwon;Kim, Il Soo;Jang, Il Young;Song, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.83-93
    • /
    • 2013
  • Generally the capacities of electric power transmission tower's members are improved by increasing their stiffness nature through injection of grout or attachment of other structural stiffeners. Those are for upgrading their axial strength by fulfillment of proper materials into pipe members, increment of member dimension by addition of section, or a combination of the two. However the use of innovative and unusual procedures would be positively recommended for getting more stable state. It is that buckled members are replaced with lengthened and strengthened members. In providing the structural restoration procedures for the existing electric power transform tower whose main members have been damaged due to unequal foundation settlement, structural damage inspection works and numerical analyses for the damaged one and the restored one were done in detail at first. secondarily member-exchanging works using a newly-generated jacking system and strengthened members were achieved. This figures are to point clearly to inherent advantages attending the management of the towers.

Analysis of mechanical performance of continuous steel beams with variable section bonded by a prestressed composite plate

  • Tahar Hassaine Daouadji;Rabahi Abderezak;Benferhat Rabia
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.183-199
    • /
    • 2024
  • In this paper, a closed-form rigorous solution for interfacial stress in continuous steel beam with variable section strengthened with bonded prestressed FRP plates and subjected to a uniformly distributed load is developed using linear elastic theory and including the variation of fiber volume fractions with a longitudinal orientation of the fibers of the FRP plates. The results show that there exists a high concentration of both shear and normal stress at the ends of the laminate, which might result in premature failure of the strengthening scheme at these locations. The theoretical predictions are compared with other existing solutions. Overall, the predictions of the different solutions agree closely with each other. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate and adhesive stiffness, the thickness of the laminate and the fiber volume fractions where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member. This research gives a numerical precision in relating to the others studies which neglect the effect of prestressed plate and the shear lag impact. The physical and geometric properties of materials are taken into account, and that may play an important role in reducing the interfacial stresses magnitude.