• Title/Summary/Keyword: Strengthened

Search Result 2,954, Processing Time 0.029 seconds

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Experimental study of masonry walls strengthened with CFRP

  • Wei, Chang-Qin;Zhou, Xin-Gang;Ye, Lie-Ping
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.675-690
    • /
    • 2007
  • In order to study the ductility and the lateral load carrying capacity of the masonry walls strengthened with CFRPs (Carbon Fiber Reinforced Polymer sheets), three pieces of masonry walls subjected to cyclic loads with low frequency and vertical load of constant amplitude have been tested. Two different strengthening methods have been used. The strengthening efficiency is affected by the strengthening method. A simplified calculation approach has been introduced based on the experimental test results, and the theoretical results agree reasonably well with the experimental results. It is found that the critical loads, the critical displacements, the ultimate loads, the ultimate displacements and the ductile coefficients of the masonry walls strengthened with CFRPs improve remarkably (6%~57%). Therefore, the masonry structures strengthened with CFRPs are of better ductility and of better lateral load carrying capacity than the masonry structures without any strengthening measurements.

Evaluation of the Capability of Non-Ice Strengthened Naval Vessels for Operation in Ice-Infested Area (비내빙설계 해군 함정의 결빙지역 운항 능력 평가)

  • Kim, Hyunwook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • With the gradual increase in the ROK naval power, it is an undeniable fact that the time of operation in the ice-infested area will be necessary in the near future. Recently, cases of ice formation around Korean waters in wintertime have been frequently reported. However, in the case of the ROK naval vessels to date, it is a fact that the ice-strengthened perspective has not been considered from the design stage. In this study, the capability of operation in the ice-infested area of the ROK naval vessels, which did not take into account the ice-strengthened design, was reviewed through the evaluation of the vessel's structural integrity in accordance with the sea ice conditions.

Long-term Mechanical Behavior of CFRP-strengthened Steel Members for a Truss Tower

  • Nakamoto, Daiki;Yoresta, Fengky Satria;Matsui, Takayoshi;Mieda, Genki;Matsuno, Kazunari;Matsumoto, Yukihiro
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2020
  • This research aimed to clarify the long-term mechanical performance of a steel truss member strengthened by a carbon fiber-reinforced polymer (CFRP) without protective coating through exposure testing. Strengthening and repair methods using CFRP have been developed in recent years; however, there is a lack of durability research for CFRP-strengthened members, especially mechanical performance investigation according to actual exposure testing. In this study, 10 CFRP-strengthening steel specimens were created in 2015, and elastic bending tests were conducted biannually. Eventually, although resin loss occurred due to environmental effects, the mechanical performance of CFRP-strengthened steel was not degraded, and we propose a calculation method of bending stiffness to evaluate the lower value of stiffness for design.

Evaluation of behavior of updated three-dimensional panel under lateral load in both independent and dependent modes

  • Rezaifar, Omid;Nik, Hamun Adeli;Ghohaki, Majid
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Three-dimensional panels are one of the modern construction systems which can be placed in the category of industrial buildings. There have always been a lot of studies and efforts to identify the behavior of these panels and improve their capacity due to their earthquake resistance and high speed of performance. This study will provide a comparative evaluation of behavior of updated three-dimensional panel's structural components under lateral load in both independent and dependent modes. In fact, this study tries to simultaneously evaluate strengthening effect of three-dimensional panels and the effects of system state (independent, L-shaped and BOX shaped Walls) with reinforcement armatures with different angles on the three-dimensional panels. Overall, six independent wall model, L-shaped, roofed L-shaped, BOX-shaped walls with symmetric loading, BOX -shaped wall with asymmetrical loading and roofed BOX-shaped wall were built. Then the models are strengthened without strengthened reinforcement and with strengthened reinforcements with an angle of 30, 45 and 60 degrees. The applied lateral loading, is exerted by changing the location on the end wall. In BOX-shaped wall, in symmetric and asymmetric loading, the load bearing capacity will be increased about 200 and 50% respectively. Now, if strengthened, the load bearing capacity in symmetric and asymmetric loading will be increased 3.5 and 2 times respectively. The effective angle of placement of strengthened reinforcement in the independent wall is 45 and 60 degrees. But in BOX-shaped and L-shaped walls, the use of strengthened reinforcement 45 degrees is recommended.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동)

  • Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.227-234
    • /
    • 2010
  • To investigate the flexural behavior of RC beams strengthened with carbon fiber sheets, 1 control beam and 8 strengthened beams(4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of carbon fiber sheets and the existence of U-shaped band, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The proposed analytical method for strengthened beams is proved to be accurate by an experimental investigation of load-deflection curve, yield load, maximum load, and flexural rigidities in the pre- and post-yielding stages.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Fiber-Steel Composite Plates (섬유-강판 복합플레이트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Cho, Baik-Soon;Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.483-491
    • /
    • 2008
  • The effectiveness of a new fiber-steel composite plate designed specifically to be used for strengthening of reinforced concrete members has been investigated. Twelve reinforced concrete beams were tested. Seven of the beams were strengthened with carbon fiber-steel composite plate(CSP), four of the beams were strengthened with glass fiber-steel composite plate(GSP), and one beam was used as a control specimen. The experimental results showed that new strengthening system controls the premature debonding and provides a more ductile failure mode than other conventional strengthening systems. The observed ductility ratios were $3.01\sim3.81$ and $3.55\sim4.95$ for strengthened beam with CSP and GSP, respectively. The maximum load was increased by 115% and 107% for strengthened beam with CSP and GSP, respectively, comparing with control beam. In addition, experimental and analytical results were well agreed.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.