• Title/Summary/Keyword: Strength stress ratio

Search Result 1,077, Processing Time 0.026 seconds

Cyclic Strength Characteristics of Soft Clay (주기적(週期的) 반복하중(反復荷重)에 의한 연약점토(軟弱粘土)의 강도특성(强度特性))

  • Ha, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.49-58
    • /
    • 1984
  • A series of cyclic triaxial tests were carried out on undisturbed samples to clarify the cyclic behavior of Bangkok(Ransit) soft clay. Based on the test results obtained from the cyclic tests employing different initial shear stress and different confining stress, the cyclic properties of clay such as shear strain development and cyclic strength were investigated. The results showed that with increase in the initial shear stress, the stress-strain curve was flattened to some extent. The cyclic strength expressed by the stress ratio was higher in the test with $1.0kgf/cm^2$ of confining stress, while the cyclic strength expressed by the deviator stress was higher in the test with $1.5kgf/cm^2$ of confining stress.

  • PDF

Optimization of Bar-to-Bar Dissimilar Friction Welding of Hydraulic Valve Spool Steel and the Weld Strength Properties and Its AE Evaluation (유공압 밸브 스풀용 강재의 봉대봉 이종재 마찰 용접 최적화와 용접강도 특성 및 AE 평가)

  • 오세규;유인종;박형동;이연탁
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.24-33
    • /
    • 1996
  • Up to now, most of studies on mechanical properties in friction welded components are about tensile and bending strength. However the fatigue studies on the friction-welded components subjected to repeated stress are not available. The purposes of this study are the development of fundamental design and the development of in-process real-time weld quality evaluation technique by acoustic emission for the bar-to-bar dissimilar friction welding of hydraulic valve spool steels.

  • PDF

Analysis for Cokes Fracture Behavior using Discrete Element Method (이산요소법을 이용한 코크스 분화 거동 해석)

  • You, Soo-Hyun;Park, Junyoung
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

Shear Strength of Inn-Rise Reinforced Concrete Shear Walls with Truss Model (트러스 모델에 의한 철근콘크리트 저형 전단벽의 전단강도)

  • 윤현도;최창식;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.97-102
    • /
    • 1992
  • To predict the shear strength of low - rise reinforced concrete shear walls with boundary elements, truss model theory considering the Vecchio - Collins stress - strain curve for softened concrete is applied. The model transforms cracked shear walls with a truss which consists of vertical bar. horizontal bar and diagonal concrete strut, and is based on equilibrium and compatibility conditions among three truss components, as well as stress - strain relationship considered for softening in diagonal concrete strut. In barbell specimens(M/VD = 0.75. fc = 420 kg/$\textrm{cm}^2$), the ratio of experimental to analytical maximum shear strength was within 0.83 ν$_{exp}$. / ν$_{cal}$. 1.25 with a relatively good agreement. As a result, the truss model was observed to be capable of predicting the maximum shear strength wi th a reasonable accuracy.acy.

  • PDF

Shear Strength Properties of Fiber Mixed Soil (섬유혼합토의 전단강도 특성)

  • Cha, Hyun-Ju;Choi, Jae-Won;Lee, Sang-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

Evaluation of Internally Cured Concrete Pavement Using Environmental Responses and Critical Stress Analysis

  • Kim, Kukjoo;Chun, Sanghyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.463-473
    • /
    • 2015
  • Three full-scale instrumented test slabs were constructed and tested using a heavy vehicle simulator (HVS) to evaluate the structural behavior of internally cured concrete (ICC) for use in pavements under Florida condition. Three mix designs selected from a previous laboratory testing program include the standard mixture with 0.40 water-cement ratio, the ICC with 0.32 water-cement ratio, and the ICC mixture with 0.40 water-cement ratio. Concrete samples were prepared and laboratory tests were performed to measure strength, elastic modulus, coefficient of thermal expansion and shrinkage properties. The environmental responses were measured using strain gages, thermocouples, and linear variable differential transformers instrumented in full-scale concrete slabs. A 3-D finite element model was developed and calibrated using strain data measured from the full-scale tests using the HVS. The results indicate that the ICC slabs were less susceptible to the change of environmental conditions and appear to have better potential performance based on the critical stress analysis.

V%drained Creep Rupture of an Anisotropically Overconsolidated Clay (이방과압밀점토의 비배수크리프파괴)

  • 강병희;오선호
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.153-162
    • /
    • 1996
  • The undrained creep tests with isotropically and anisotropically overconsolidated clays were performed to investigate the effects of anisotropic consolidation on the undrained creep rupture behavior. Results of tests showed that the undrained creep rupture behaviors were iuluenced significantly by stress history including overconsolidation ratio and consolidation pressure ratio$(\sigma_{3c}/\sigma_{le})$. That is. the creep strength of clay increases with the increase of both overconsolidation ratio and consolidation pressure ratio. It, therefore, is dangerous to decide the possibility of creep rupture of clay by the isotropically consolidated creep rupture test in the case of the coefficient of earth pressure lower than 1.0. And the creep strength of clay could be obtained by the equation of the upper yield strength suggested by Finn and Shead(1973) irrespective of both overconsolidation ratio and consolidation pressure ratio.

  • PDF

An experimental study on the mechanical properties of early age concrete (초기재령 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Kwang-Gyo;Yang, Eun-Ik;Yi, Seong-Tae;Kim, Myung-You;Park, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.668-671
    • /
    • 2004
  • Recently, the concern for mechanical properties at early age concrete are increasing because of the importance of the thermal stress and the determination of removal time of form work and prestressing work. In this study, an estimation for the development of compressive strength and elastic modulus with age in concretes isothermally cured $(10^{\circ}C,\;20^{\circ}C)$ and having W/C ratio of 30, 40, and $50\%$ were investigated. According to experiment results, the development of compressive strength and elastic modulus shows higher values at early ages as the W/C ratio decreases and curing temperature increases. When the maturity concept, for estimation of the strength, is adopted, a modification for W/C ratio is required at early ages.

  • PDF

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

Expansion performance and mechanical properties of expansive grout under different curing pressures

  • Yiming Liu;Yicheng Ye;Nan Yao;Changzhao Chen
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.327-339
    • /
    • 2023
  • The expansion capacity and strength of expansive grout have a significant influence on the stress state of a supported rock mass and the strength of a grout-rock mass structure. The expansion and strength characteristics are vital in grouting preparation and application. To analyze the expansion performance and mechanical properties of expansive grout, uniaxial compressive strength (UCS) tests, expansion ratio tests, XRD, SEM, and microscopic scanning tests (MSTs) of expansive grout under different curing pressure conditions were conducted. The microevolution was analyzed by combining the failure characteristics, XRD patterns, SEM images, and surface morphologies of the specimens. The experimental results show that: (1) The final expansion ratio of the expansive grout was linear with increasing expansion agent content and nonlinear with increasing curing pressure. (2) The strength of the expansive grout was positively correlated with curing pressure and negatively correlated with expansion agent content. (3) The expansion of expansive grout was related mainly to the development of calcium hydroxide (Ca(OH)2) crystals. With an increase in expansion agent content, the final expansion ratio increased, but the expansion rate decreased. With an increase in the curing pressure, the grout expansion effect decreased significantly. (4) The proportion of the concave surfaces at the centre of the specimen cross-section reflected the specimen's porosity to a certain extent, which was linear with increasing expansion agent content and curing pressure.