• 제목/요약/키워드: Strength stress ratio

검색결과 1,075건 처리시간 0.033초

Al-Cu-Zr 합금 초소성 성형품의 기계적 성질 (mechanical properties of Al-Cu-Zr alloy parts by superplastic forming)

  • 이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

나선근에 의한 콘크리트의 횡보강 효과에 관한 실험적 연구 (An Experimental Research on the Confinement Effect of Concrete Specimens with Spirals)

  • 김진근;박찬규
    • 콘크리트학회지
    • /
    • 제7권2호
    • /
    • pp.146-154
    • /
    • 1995
  • 이 연구에서는 중심 압축 하중을 받는 나선근으로 횡보강된 시험체에 대한 횡보강 효과를 실험적으로 규명하였다. 주요 변수는 콘크리트의 압축강도, 나선근의 간격과 나선근의 항복강도로서 콘크리트 압축강도는 27.2, 62.4, 81.2MPa, 나선근 간격은 120, 60, 40, 30, 25, 20mm 나선근의 항복 강도는 451,1375MPa로 하였다. 실험 결과, 동일한 나선근 체적비 및 항복 강도에서 횡보강된 콘크리트의 압축강도증가는 콘크리트의 압축강도에 관계없이 일정하였지만, 최대 응력에서의 축방향 변형도는 압축강도가 증가함에 따라 감소하는 것으로 나타났다.

T형 평면용접이음재의 응력해석과 굽힘피로강도에 관한 연구 (A Study on Stree Analysis and Bending Fatigue Strength of One Side Fillet Welded T-joint)

  • 강성원;이태훈;전재목;김충희
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.51-57
    • /
    • 1999
  • In this study, one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by stress analysis and bending fatigue test without edge preparation, with variation of joint shape. The purpose of this study is to give the welding condiltion and design standard on manufacturing one side fillet welded T-joint. As a result, the following conclusions were obtained. 1) In one side fillet welded T-joint, the larger the leg length and the penetration depth, the greater the bending fatigue strength because reduction of stress and strain on toe and root. The increase of the longitudinal leg length rather than vertical leg length contributed to the increase in bending fatigue strength. 2) In one side fillet welded T-joint without edge preparation, both general manual welding and general automatic welding were carried out with same condition. In this case, automatic welding showed deeper penetration and more increased longitudinal leg length than manual welding, so that automatic welding offers greater bending fatigue strength. 3) For one side fillet welded T-joint without edge preparation with automatic welding, the ratio(h/t) of the leg length(h) and the main plate thickness(t) in which toe crake can occur was 1.0 over.

  • PDF

누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성 (Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage)

  • 김동호;홍창우;이주형;이봉학
    • 한국농공학회지
    • /
    • 제44권2호
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Stability evaluation of a double-deck tunnel with diverging section

  • La, You-Sung;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.123-132
    • /
    • 2020
  • Due to the various restrictions and problems related to the construction of new roads in urban areas, underground road construction has been receiving a great deal of attention in the field of tunnel engineering. In this study, a double-deck road tunnel with a diverging section was analyzed for the evaluation of its stability. Both numerical analysis and scale model tests were performed, the results were used to develop a stability evaluation method for double-deck tunnels with diverging sections constructed in rocks by NATM. From regression analyses conducted on the results of the numerical analysis, an equation and a chart were derived, these tools allow us to obtain the strength/stress ratio (SSR) for double-deck road tunnels with a diverging tunnel in various diverging conditions quickly and accurately. These tools have great potential to help engineers evaluate the stability of double-deck tunnels in the preliminary design stage.

응력비 변화에 따른 십자형 접합부의 피로거동 평가 (An Estimation of the Fatigue Behavior on the Cruciform Type Specimen by Variation of the Stress Ratio)

  • 김태봉;서상구;우상익
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.140-145
    • /
    • 2000
  • 강교량 부재인 십자연결형 접착부를 하중비전달형과 하중전달형으로 각각 제작하여 피로 강도 저감 정도와 응력비 변화에 따른 피로거동을 평가하였다. 또한, 필렛용접 비드의 기하학적 형상에 따른 응력집중을 확인하기 위하여 전산해석을 수행하였다. 피로실험 결과 시험편의 응력비가 피로 강도에 미치는 영향은 거의 없는 것으로 나타났으며, 하중전달형 시험편과 대부분의 밀착 시험편은 용접지단부에서 균열이 발생하여 모재가 파단됨을 알 수 있었다. 모재가 파단된 십자형 시험편의 피로강도는 ${\Delta}\sigma_c$=63.5 MPa로 하중 비전달형 시험편의 피로강도 ${\Delta}\sigma_c$=83.8 MPa보다 약 24% 작게 나타났다. 본 연구대상 시험편은 도로교 시방서상에 모재단면에 대한 응력으로 피로범주 C등급으로 규정하고 있으므로, 실험결과를 모재단면에 대한 응력으로 피로강도를 환산하면 78.27 MPa로 허용 피로강도보다 작은 것으로 나타났다.

  • PDF

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

고강도 철근 콘크리트 기둥의 실험 및 강도해석 (Experiment and Strength Analysis of High-Strength RC Columns)

  • 손혁수;김준범;이재훈
    • 콘크리트학회지
    • /
    • 제11권1호
    • /
    • pp.149-160
    • /
    • 1999
  • 본 논문은 고강도 콘크리트기둥에 대한 설계방법을 검증하는 연구의 일부로서, 보통강도 및 고강도 콘크리트기둥시편에 대하여 편심하중의 재하실험을 수행하여 파괴거동을 관찰하고 기둥강도를 측정하였다. 기둥시편은 모두 32개로 콘크리트 압축강도, 종방향 철근비, 세장비, 재하편심을 실험의 주요변수로 선정하였다. 콘크리트 압축강도는 356~951 kg/$cm^$ 이며, 종방향철근비는 1.13~5.51 %, 세장비는 19, 40, 61의 3 종류로 하였다. ACI의 직사각형 응력블럭, Ibrahim과 MacGregor의 수정된 직사각형 응력블럭, 사다리꼴 응력 블럭을 이용한 기둥강도해석과 축력-모멘트-곡률해석을 통한 기둥강도해석을 수행하였으며, 실험결과와 비교분석하였다. 현시방서에서 적용하고 있는 직사각형 응력블럭은 철근비가 낮은 고강도 콘크리트기둥에 대하여 비안전측의 축력-모멘트강도를 제공한다. 축력-모멘트-곡률해석을 통한 기둥강도해석시에는 콘크리트 응력-변형률곡선의 최대응력을 결정하는 $k_3$ 값에 따라 정확성 및 안전성이 좌우된다. 또한, 본 논문에서는 재하실험을 통한 기둥의 파괴거동, 압축연단 극한변형률, 응력블럭변수 등을 비교분석하였다.

숏피닝 가공재의 저온 피로 강도 평가 (An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature)

  • 박경동;권오헌
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.