• Title/Summary/Keyword: Strength reduction

검색결과 2,895건 처리시간 0.028초

아토마이징 제강 환원슬래그를 사용한 폴리머 콘크리트 복합재료의 특성 (I) (PMMA 수축저감재를 사용) (Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag (I) (Use of PMMA as a Shrinkage Reducing Agent))

  • 황의환;김진만
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.181-187
    • /
    • 2014
  • 구형의 아토마이징 제강 환원슬래그(래들로 슬래그)를 폴리머 콘크리트 복합재료의 잔골재 대신 사용하기 위하여 아토마이징 제강 환원슬래그의 대체율과 폴리머 결합재의 첨가율을 다양하게 변화시켜 공시체를 제작하였다. 공시체의제 물성을 조사하기 위하여 흡수시험, 압축 및 휨강도, 내열수성시험, 세공분포측정 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 폴리머 결합재 7.5% 첨가한 공시체는 제강 환원슬래그의 대체율이 증가됨에 따라 압축 및 휨강도가 증가되었으나 폴리머 결합재 8.0% 이상에서는 유동성의 증가로 인한 재료분리 현상으로 특정한 대체율에서 최대값을 나타내었다. 내열수성시험에 의하여 압축강도, 휨강도, 세공의 평균직경 및 밀도는 감소되었으나 총세공량과 공극률은 증가되었다. 아토마이징 제강 환원슬래그를 잔골재 대신 사용함으로써 유동성이 현저히 증가되어 폴리머 결합재의 사용량을 최대 23.5%까지 절감할 수 있는 것으로 나타났다. 그러나 아토마이징 제강 환원슬래그를 사용함으로써 내열수성이 감소되기 때문에 더 많은 연구가 요구된다.

수치해석에 의한 지중 구속압과 말뚝-지반 경계면 강도감소계수 관계 분석 (A Study on the Correlation Evaluation of Confining Pressure and Pile-Soil Interface Strength Reduction Factor Using Numerical Analysis)

  • 이태겸;한중근;홍기권;유승경
    • 한국지반신소재학회논문집
    • /
    • 제23권1호
    • /
    • pp.9-16
    • /
    • 2024
  • 본 연구에서는 지중 구속압과 말뚝-지반 경계면 전단 특성의 관계를 평가하기 위하여 기존의 실험결과와 강도감소계수가 적용된 해석 결과를 비교하였다. 유한요소해석에서 말뚝-지반 경계면의 전단거동 모사는 강도감소계수를 적용하였다. 해석 결과, 세립분 함유율이 증가할수록 구속압의 영향이 낮아지면서 최대 인발저항력은 감소하였다. 이 해석결과의 경향은 기존 실험 결과와 유사한 것으로서, 경계면 강도감소계수가 적용된 유한요소해석 모델은 적절하게 모사된 것으로 평가되었다. 경계면 강도감소계수의 변화를 분석한 결과, 구속압 50kPa의 경우에는 세립분 함유율이 증가할수록 경계면 강도감소계수의 증가가 확연하게 나타난 반면에, 구속압이 100kPa 및 150kPa의 경우에는 그 증가폭이 낮은 것을 알 수 있었다. 따라서 말뚝-지반 경계면의 전단 거동을 평가하기 위한 유한요소해석은 구속압과 세립분 함유율이 고려되어야 한다.

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Use of e-plastic waste in concrete as a partial replacement of coarse mineral aggregate

  • Sabau, Marian;Vargas, Johnny R.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.377-384
    • /
    • 2018
  • The accelerated increase of the population growth rate in the world and the current lifestyle based on consumerism considerably increased the amount of waste generated by the human activity. Specifically, e-plastic waste causes significant damage to the environment because of its difficult degradation process. This paper aims to establish the feasibility of using e-plastic waste in concrete as a partial replacement of coarse mineral aggregate. Considering a control mix without e-plastic waste designed for a compressive strength of 21 MPa, tests on concrete mixes with 40, 50 and 60% of e-plastic waste aggregate to determine the fresh and hardened properties were carried out. A reduction in the compressive strength as the percentage of e-plastic waste increases was observed, the maximum reduction being 44% with respect to the control mix. In addition, a significant reduction as much as 22% in the density of the concrete mixes with e-plastic waste was recorded, which means that lighter elements can be produced with this type of concrete. Two new equations based on regression analysis of the experimental data from this study were proposed. These equations estimate the reduction in the compressive strength of concrete mixes with e-plastic waste aggregate at 14 and 28 days. A cost analysis and a practical alternative to introduce this waste material into the market are also presented.

녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트 (Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation)

  • 이영주;장정권;김윤일;임칠순
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

중간부 부착파괴된 CFRP 판 보강 RC 보의 휨강도 평가 (Evaluation of Nominal Flexural Strength in RC Beams Strengthend with CFRP Plate and Failed by Intermediate Crack Debonding)

  • 홍성남;박종인;김태완;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.101-112
    • /
    • 2011
  • 본 논문은 중간부 부착파괴된 CFRP 보강 RC 보의 휨강도 산정을 다루고 있다. CFRP 보강 RC 보의 중간부 부착파괴의 영향을 고려하기 위해 강도감소계수를 제안하였다. 제안된 계수는 CFRP의 유효응력(또는 유효변형률)과 극한응력(또는 극한변형률)비로 정의 되는 유효변률 모델을 이용하여 실험데이터로부터 유도하였다. 휨강도 산정식은 강도감소계수를 변수로 하여 함수를 구성하였다. 제안된 강도감소계수의 유효성, 정확성 및 타당성을 입증하기 위해서 각국의 설계기준 및 연구자들에 의해 제안된 계수 값과 실험값을 본 연구결과와 비교 및 검증했다. 본 논문에서 제시하는 해석 결과는 제안된 강도감소계수가 중간부 부착파괴된 CFRP 보강 RC 보의 휨강도를 매우 효율적으로 평가할 수 있음을 나타낸다.

Al-Cu 합금의 일방향 응고조직과 기계적 성질에 미치는 냉간압연의 영향 (A Study on the Changes in Microstructures and Mechanical Properties of Unidirectionally Solidified Al-Cu Alloys due to Cold-Rolling)

  • 오명환;나형용
    • 한국주조공학회지
    • /
    • 제3권1호
    • /
    • pp.3-12
    • /
    • 1983
  • The influence of columnar dendirtes on the mechanical properties of Al-1% Cu alloys as unifirectionalloy solidified under the conditions of controlled crystal growth rate (R) and temperature gradient (G) was investigated. And the change of metallography and mechanical properties when unifirectionalloy solidified alloys and cast alloys were cold-rolled from 10% to 90% in reduction ratio was studied. The results are as follows: 1. The elongation and yield strength of unifirectionalloy solidified alloy are higher then those of cast alloy, but there is a little decrease in ultimate tensile strength. 2. The metallography and mechanical properties are changeable with the primary arm spacings when the unidirectionalloy solidified alloys were cold-rolled from 10% to 90% in reduction ratio. An alloy with larger primary arm spacings was easily changeable in metallography and mechanical properties when it was cold-rolled. 3. The tensile strength of transversely cold-rolled to 90% in reduction ratio was higher then that of longitudionalloy cold-rolled to 90% in reduction ratio. In the case, the fractorgraphs of fractured surface showed that the cast alloy and the unifirectionalloy solidified alloy was ductile-fractured, but the surface of transversely cold-rolled to 90% reduction of unidirection alloy solidified was slip plane qracture.

  • PDF

Comparison of Grip and Pinch Strength between Dominant and Non-dominant Hand according to Type of Handedness of Female College Students

  • Kim, Ji-Sung;Lee, Sa-Gyeom;Park, Sung-Kyu;Lee, Sang-Min;Kim, Bo-Kyung;Choi, Jung-Hyun;Kim, Soon-Hee
    • 국제물리치료학회지
    • /
    • 제2권1호
    • /
    • pp.201-206
    • /
    • 2011
  • In using both hands, everyone dominantly use one hand and it is called left-handedness or right-handedness person. Measurements of grip and pinch strength provide objective indexes to represent functional integrity of the upper extremity. This study was conducted for thirty female college students(19 right-handedness and 11 lefthandedness). For assessment of the type of handedness, questionnaire was used; for grip strength, Jamar dynamometer was used; for pinch strength, Jamar pinch gauge was used. In right handedness, the grip and pinch strength of the dominant right hand was significantly higher than those of the non-dominant hand. In addition, regular exercises were shown to give influences on reduction of strength gaps between dominant and non-dominant hands. In both groups of left and right handedness, the grip and pinch strength of the dominant hand were significantly higher than those of the non-dominant hand, and regular exercises were shown to give influences on reduction of strength gaps between dominant and non-dominant hand.

Effect of Multi-Layer Carbon Fiber Sheet Used for Strengthening Reinforced Concrete Beams

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • 콘크리트학회논문집
    • /
    • 제17권1호
    • /
    • pp.149-155
    • /
    • 2005
  • The purpose of this study is to investigate the flexural strengthening effects of CF(Carbon Fiber) sheet for the full-scale RC beams with multi-layer CF sheets. The partial strength reduction factors of CF sheets are suggested from the full-scale RC beams tests strengthened with multi-layer CF sheets up to six layers as well as material tests. From the material tensile tests, it was observed that the average tensile strengths of CF sheets per layer are decreased as the number of CF sheets is increased. Also the steep strength reductions of CF sheets in material test results at rupture are observed compared with the structural tests results for the full-scale RC beams strengthened with multi-layer CF sheets. Finally, the partial strength reduction factors far CF sheets up to six layers are suggested considering the effects of multi-layer and unit weight of CF sheets.