• Title/Summary/Keyword: Strength of Weldment

검색결과 180건 처리시간 0.023초

Alloy 617 확산용접재의 고온 인장강도 (High-Temperature Tensile Strengths of Alloy 617 Diffusion Weldment)

  • 사인진;황종배;김응선
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.15-23
    • /
    • 2018
  • A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.

필릿 용접구조물의 피로해석을 위한 기준응력에 대한 비교 연구 -구조응력 및 핫스팟응력- (A Comparative Study for the Fatigue Assessment of fillet Weldments Using Structural Stress and Hot Spot Stress)

  • 하청인;강성원;김만수;손상용;허주호;김명현
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.476-483
    • /
    • 2006
  • Fatigue strength assessments with two types of load carrying fillet weldment under out-of-plane bending load have been carried out by using both hot spot stress and structural stress methods. In this study, a derivation for the structural stress method using shell element models is discussed in detail. Finite element analysis using shell element models have been performed for the assessment of fatigue strength. As a result of the fatigue strength evaluation for load carrying transverse fillet weldment, hot spot stress method is found to be consistent with structural stress method and measurement. Hot spot stress, however, estimated for the load carrying longitudinal fillet weldment exhibit large variation with respect to mesh size and element type while the calculated structural stress for the longitudinal fillet weldment is relatively independent of mesh size. On the other hand, drawbacks and doubts associated with applying the structural stress method such as the guidance of virtual node method have been discussed.

상 변태를 고려한 HY-100강 용접부의 수축 및 잔류응력 예측에 관한 연구 (A Study on the Prediction of Shrinkage and Residual Stress for the HY-100 Weldment Considering the Phase Transformation)

  • 이희태;신상범
    • Journal of Welding and Joining
    • /
    • 제25권1호
    • /
    • pp.42-48
    • /
    • 2007
  • For high performance and structural stability, application of high strength steel has continuously increased. However, the change of the base metal gives rise to problems with the accuracy management of the welded structure. It is attributed to the martensite phase transformation of the high strength low alloy steel weldment. The purpose of this study is to establish the predictive equation of transverse shrinkage and residual stress for the HY-100 weldment. In order to do it, high speed quenching dilatometer tests were performed to define a coefficient of thermal expansion(CTE) at the heating and cooling stage of HY-100 with various cooling rates. Uncoupled thermal-mechanical finite element(FE) models with CTE were proposed to evaluate the effect of the martensite phase transformation on transverse shrinkage and residual stresses at the weldment. FEA results were verified by comparing with experimental results. Based on the results of extensive FEA and experiments, the predictive equation of transverse shrinkage and longitudinal shrinkage force at the HY-100 weldment were formulated as the function of welding heat input/in-plane rigidity and welding heat input respectively.

진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구 (A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching)

  • 이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구 (Investigations on electron beam weldability of AlZnMgCu0.5 alloys)

  • 배석천
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

충격하중에 의한 용접구조물의 강도 증가에 관한 연구 (A Study on the strength improvement in weldment by the impact loading)

  • 이천수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 1998
  • It is well known that during the oxygen cutting residual thermal stresses are produced in weldment. Surface compressive residual stress is one of reasons for improvement on fatigue durability. To reduce the residual stress and improve the fatigue strength applied the impact loading in oxygen cutting frame. After applying the impact loading, redistribution of residual stress was measured by cutting method and tested fatigue tests.

  • PDF

응력 특이점을 갖는 필릿 용접구조물의 피로해석을 위한 가상절점법을 이용한 구조응력 계산 기법 고찰 (A Study on the Fatigue Strength Evaluation for Fillet Weldment including Stress Singularity using Structural Stress with Virtual Node Method)

  • 하청인;강성원;김명현;김만수;손상용;허주호
    • Journal of Welding and Joining
    • /
    • 제24권3호
    • /
    • pp.27-33
    • /
    • 2006
  • Structural stress approach is well known as a mesh-size insensitive fatigue assessment method by using finite element analyses. It is, however, difficult to estimate the structural stress (SS) at weld end points due to stress singularities when shell elements are used. In this study, fatigue evaluations with longitudinal load carrying box fillet weldment under out-of-plane bending load have been performed by using virtual node method (VNM) in order to avoid the problem, which is called the weld end effect. Various combinations of virtual node parameters, such as reference point and virtual node locations, are investigated for the estimation of proper structural stress values applying VNM in a systematic manner. The appropriate guidance of virtual node parameter has been offered for the fillet weldment considered in the study. The structural stress values obtained by VNM have also been validated by comparing the result with finite element model including weld bead. Moreover, the fatigue strength of the fillet weldment based on the equivalent structural stress is shown to be consistent with the master S-N curve.

저항 점 용접부의 피로강도에 미치는 잔류응력의 영향 (Effect of Residual Stress on Fatigue Strength in Resistance Spot Weldment)

  • 양영수;손광재;조성규;홍석길;김선균;모경환
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1713-1719
    • /
    • 2001
  • Estimation of fatigue strength on the spot welded joint is very Important for strength design of spot welded steed sheet structures. In this paper, the effect of residual stress on the fatigue life of resistance spot weldment was studied. Residual stress fields of weldment were calculated by using thermo elastic plastic finite element analysis and equivalent fatigue stress considering residual stress effect was obtained. And then we predicted fatigue life, which included the effect of the residual stresses and the actual loading stresses. The calculation and experimental results were in good agreement. Therefore, the proposed calculated model can be considered to be sufficiently powerful for the prediction of fatigue life.

협계용접부 강도 불균일을 고려한 소성 η계수 평가 (I) (Evaluation of the Plastic η-Factor Considering Strength Mismatch in a Narrow Gap Welding Part (I))

  • 허용;김형익;선광상;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.504-511
    • /
    • 2008
  • This study evaluated the influence of the strength mismatch of HAZ for a plastic ${\eta}$-factor, which is the principle parameter determining the plastic portion of J-integral to assess the fracture toughness of the weldment. The specimen of tensile and hardness test was manufactured from the piping applying narrow-gap welding, and the mechanical properties of weldment, HAZ and a base metal were obtained. To perform the finite element analysis according to the ratio of strength mismatch, the material properties was chosen with the change of strength using the determination method of Ramberg-Osgood constant. Also, the influence of the strength mismatch of HAZ was determined using finite element analysis by those properties.

협계용접부 강도 불균일을 고려한 소성 η계수 평가 (II) (Evaluation of the Plastic η-Factor Considering Strength Mismatch in a Narrow Gap Welding Part (II))

  • 허용;김형익;이광현;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.512-518
    • /
    • 2008
  • This study would like to evaluate the influences with the strength mismatch and the variation of the welding width of the narrow gap welding for the plastic parameter, the major constant determining the plastic ${\eta}$-factor of J-Integral, using 3-D FEM. For this, we evaluate the plastic ${\eta}$-factor according to the variation of the strength mismatch of weldment with same materials and welding width through FEM. Also, we proposed the equation of plastic ${\eta}$-factor considering the variation of the strength mismatch of weldment with similar materials and welding width.