• Title/Summary/Keyword: Strength of Product

Search Result 1,244, Processing Time 0.032 seconds

Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

  • Lim, Sang-Sub;Mun, Jae-Chul;Kim, Tae-Won;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.922-934
    • /
    • 2014
  • In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.

A Study on CFRTP Aircraft Frame Stiffening by OOA Process (OOA 공정을 통한 CFRTP 항공기 Frame 보강재 성형에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Choi, Hyun-Seok;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2017
  • Carbon fiber reinforced plastic (CFRP) is applied as structural material. CFRP is excellent in plane strength / stiffness and don't haves rust. Lightweight, rigid and robust at the same time as transportation material. Aluminum alloy and reinforcement material The application is increasing rapidly. In this study, the prototype of a semi - Monocoque structure frame, Longeron, Stringer, Skin of the aircraft, restraining the rigidity Clips of the aircraft was designated as the target product and the experiment was conducted. ln the experiment, (1) For CFRTP 3 points, data on heating, transfer, and cooling were measured using Thermo Couple, and optimum temperature required for flexible state was obtained. Heating was performed at a temperature 15% higher than the provided temperature. (2) By using a pneumatic press during molding, by dividing LH, center and RH according to the cooling time, thickness parameter of the target product due to the load is measured, and thickness control and time-deviations were analyzed and cross sections were observed with a low magnification microscope.

The Utilization of Domestic Fly Ash as a Cement Raw Material (시멘트 원료로 국내산 석탄재의 이용 가능성)

  • Lee, Yoon-Cheol;Lee, Se-Yong;Min, Kyung-So;Lee, Chang-Hyun;Park, Tae-Gyun;Yoo, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

An Experimental Study on the Strength Development of Using Fly-Ash 100% Mortar for Binder (결합재로서 플라이애쉬 100% 사용 모르타르의 강도발현에 관한 실험적 연구)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Ahn, Ki-Hong;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.721-724
    • /
    • 2008
  • Recently, by-products for example of fly-ash, blast-furnace slag and etc are generally using in concrete. However a mount of by-products are mostly dropped into the land and sea. Expecially it is necessary to manage against London Dumping Convention which is prohibited for throwing the by-product into the sea. The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cements.

  • PDF

Characteristics of tools for improving the tool life and forged product on cold forging (냉간 단조용 금형 수명 및 단조품 품질 향상을 위한 금형 특성 연구)

  • Lee Y.S.;Kwon Y.N.;Kwon Y.C.;Lee J.H.;Choi S.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.125-126
    • /
    • 2006
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. In this study, heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product.

  • PDF

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF

A Study on the Runner and Gate Consequence of Manufacture Double Shot Molding using CAE (CAE 를 이용한 이중사출 제품의 러너 및 게이트 영향에 대한 연구)

  • Kim, O.R.;Cha, B.S.;Lee, S.Y.;Kim, Y.G.;Woo, C.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.160-165
    • /
    • 2009
  • A Study on Effects of the Runner and the Gate of double shot injection molded Parts using CAE Double shot injection molding can inject two different materials or two different colors in the same mold in a injection molding process. Double shot injection molded parts can be characterized that the base part maintains strength and specified part can inject soft-material. It can reduce the production cost by single automatic operations. In this paper, we designed double shot injection mold for automobile emote control To inject secondary part, this part is used as an insert after external appearance of product is injected. CAE analysis was progressed gate location and runner size as variables. The analysis result is reflected in mold design process. As a result, it could solve problems which are generated in the conventional mold. Additionally, cost can be downed by reducing runner weight. As well as it could omit painting process because the surface of finished product is improved through new mold.

Suggestions of Movement-Assistive Knee Pad Designs: Focusing on Preference and Satisfaction Evaluations Using Virtual Avatars' Wearing (움직임 보조를 위한 무릎 보호대 디자인 제안: 선호도 및 가상 착용 이미지를 이용한 만족도 평가를 중심으로)

  • Park, Sujin;Koo, Sumin
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • This study evaluated designs via the consumers' function and design preferences survey for using product design images, virtual avatar wearing images and product explanations that identified consumers' function and design preferences for knee protection pads as well as to develop movement assistive knee pad designs. We developed Design A for men and Design B for women. For Design A, the front of the knee supports muscles and alleviates pain with a hole. Mesh material with good ventilation was applied to enhance wearing comfort. The color was achromatic for a modern style, and the hook fastener and loops enabled easy wear and removal of the pad while controlling size and pressure strength. For Design B, taping details seamlessly support muscles in the knee area with fabrics less than 0.1 cm thick and with long sleeves in the diverse sizes. The design's satisfaction assessment showed that potential consumers were satisfied with Design A and Design B for overall design and functional features. Over 77% wanted to use/wear and purchase designs; in addition, over 78% expected it would help with walking and relieve knee pain. The results can be helpful for designers when deciding designs for manufacturing and commercializing kneepad products.

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.

Development of porthole Die on Aluminum Extrusion for the Automobile Control Arm (자동차용 컨트롤 암 알루미늄 열간 압출을 위한 포트홀 금형개발)

  • Joe, Young-June;Lee, Sang-Kon;Oh, Kae-Hee;Park, Sang-Woo;Lee, Woo-Sik;Jang, Gae-Won;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.102-108
    • /
    • 2007
  • The characteristic properties of aluminum, high strength stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight reduction demand within the automotive industry. In this paper, FE simulation was carried out to design an appropriate extrusion die for the automobile control arm. Based on the FE simulation result, a new die design has been proposed for uniform material flow in the cross section of extruded product. And then the welding pressure, extrusion load, and the tendency of mandrel deflection were estimated to verify high quality. In the extrusion experiment, it was possible to produce sound product without defects.