• Title/Summary/Keyword: Strength of Concrete

Search Result 10,934, Processing Time 0.049 seconds

Efficient Pseudo Random Functions for the e-seal Protection Protocol (e-seal 보안 프로토콜을 위한 효율적인 Pseudo Random Function)

  • Min Jung-Ki;Kang Seok-Hun;Chung Sang-Hwa;Kim Dong-Kyue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.274-276
    • /
    • 2006
  • e-seal은 RFID(Radio Frequency IDentification) 기술을 사용하여 원격에서 자동으로 봉인상태를 확인할 수 있는 컨테이너 봉인 장치를 말한다. RFID의 특징상 반도체 칩에 기록된 정보를 제 삼자가 쉽게 판독 및 변조할 수 있다는 취약점으로 인하여 활성화되지 못하고 있는 실정이다. ISO에서는 RFID의 취약점을 보안하기 위한 표준작업(ISO 18185)을 진행 중이다. 이 중, ISO 18185-4는 e-seal에 저장되는 자료나 리더와의 RF통신에서 데이터 보호를 위한 표준이다. 이와 관련된 연구로는 인증 프로토콜과 ISO 18185-4를 위한 보고서로 제출된 보안 프로토콜이 있다. 제안된 e-seal 보안 프로토콜을 적용하기 위해서는 e-seal과 리더 간의 데이터를 암/복호화할 키가 필요하지만, 키 서버를 통해 전달받은 마스터 키를 데이터 암/복호화 키로 바로 사용하는 것은 보안 상의 문제점을 야기할 수 있기 때문에 PRF(Pseudo Random Function)을 이용하여 마스터 키로부터 MTK(Mutual Transient Key)를 유도하고, MTK를 암/복호화 키로 사용해야 한다. 기존의 PRF는 일방향 해시 함수(MD5, SHA 등)를 기반으로 하는 HMAC[2. 3]을 일반적으로 사용하였다. 그러나 일방향 해시 함수는 e-seal과 같은 제한된 자원을 갖는 환경에 적합하지 않다. 따라서, 본 논문에서는 e-seal 보안 프로토콜을 위한 효율적인 PRF을 제안한다. 기존의 일방향 해시 함수 기반이 아닌 블록 암호화 알고리즘을 기반으로 하는 MAC을 이용하여 PRF을 보다 효율적으로 구현하였고, 블록 암호화 알고리즘은 AES를 선택 합성체 $GF((2^4)^2)$을 통해 하드웨어 모듈을 최적화 하였다. AES를 기반으로 하는 MAC은 HMAC에 비해 면적 및 처리율에서 뛰어난 결과를 보여주었다.<0.01).이상의 연구 결과, cook-chill생산 시 녹차 추출물의 첨가가 미생물적 품질유지에 효과가 있다고 사료되는 바 본 연구결과를 기초로 급식소에서 음식 생산 시 녹차 추출물 및 천연 항균성 물질 첨가에 따른 미생물적 품질 및 관능적 품질검사를 통한 레시피 개발에 관한 지속적인 연구가 수행되어야 하겠다.다.다리다보니 점심시간을 활용할 수 없게 되는 문제점에 대한 재검토가 필요하다. 따라서 차후 학교급식의 안전성 확보를 위한 급식환경 개선의 일환으로 식당공간 확보 시 신속한 시간 내에 급식이 가능하도록 넓은 공간과 쾌적한 환경의 식당 조성에 대해 관심을 기울여야 할 것으로 사료된다. 이상 여부를 반영하는 임상증상의 빈도가 높은 청소년기 남녀 중학생의 경우 아침과 저녁의 결식빈도 및 외식과 간식의 빈도가 높았고, 아침식사의 질과 체형만족도가 낮은 것으로 나타나 청소년의 건강과 식습관 및 체형만족도가 상호 관련성이 높은 것으로 나타났다. 따라서 본 연구 결과는 성장기 청소년의 건강 유지를 위하여 바람직한 식습관의 중요성을 재인식할 수 있었으며, 올바른 식습관 확립을 위한 영양교육의 중요성이 재확인되었다.경제적일 것으로 판단된다.er 90 % of good relative dynamic modulus of elasticity due to fineness of formation caused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, it can be said that the usage of crushed stone fines can control the strength of super flowing concrete by replacement and re

  • PDF

Behavior of Geotextile Tube Composite Structure by 2-D Limit Equilibrium and Plane Strain Analysis (2차원 한계평형 및 평면변형해석을 통한 지오텍스타일 튜브 복합구조물의 거동분석)

  • Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The geotextile have been used in filtration and drainage for over 30 years in many applications of civil and environmental projects. Geotextile tube is compound technology of filtration and drainage property of geotextile. Geotextile have been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers, and other innovative systems involving containment of soils using geotextile. They are hydraulically filled with dredged materials. It have been applied in coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. This paper presents the behavior of geotextile tube composite structure by 2-D limit equilibrium and plane strain analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure for the lateral load and also the plane strain analysis was conducted to determine the design and construction factors. Based on the results of this paper, the three types of geotextile tube composite structure is stable. And the optimum tensile strength of geotextile is 151kN/m and maximum pumping pressure is 22.7kN/m.

  • PDF

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses (수치해석을 이용한 기존 피해 보강토 옹벽의 보강에 관한 사례 연구)

  • Won, Myoung-Soo;Langcuyan, Christine P.;Choi, Jeong-Ho;Ha, Yang-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.

Effects of Seismic Loads with Different Return Period on Residential Building with RC Shear Wall Structure under Construction (주거용 RC 벽식 건물의 시공 중 재현주기에 따른 지진하중의 영향)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • Even though the structural safety is confirmed in the design stage, the structural safety is not guaranteed in the construction stage because the structural system is not completed. In addition, since the construction period is shorter than the period of use of the building after completion, it is excessive to apply the same seismic load to the construction stage as in the design stage. ASCE 37-14 presents the concept of seismic load reduction factor during construction, but does not provide a clear application method. Therefore, in this study, the seismic load reduced according to the return period was applied to the example model of a residential middle-rise RC building. The construction stage of the example model was divided into five-story units, and seismic load with the change of the return period was applied to the construction stage models to analyze the change of seismic load during construction and to check the sectional performances of structural members. By comparing the design strength ratio of the shear wall at the design stage and the construction stage, the range of seismic load magnitudes that can assure the safety during construction of a residential middle-rise RC building was analyzed in terms of the return period.

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

A Study on the Construction Specification and Quality Assurance Criteria in Clay Paver (점토바닥벽돌의 품질 및 시공기준 연구)

  • Park, Dae-Gun;Lee, Sang-Yum;Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.111-121
    • /
    • 2010
  • As the customer's interest for sidewalk block in the street or apartment complex is increasing, the materials of block which had been a concrete block exclusively are varied to clay paver, native rock and wood etc. Especially, the sales volume of clay paver which is environment-friendly and ergonomic is dramatically increasing every year with two digits growth rate, however, many problems like "Edge Cracking" "Freezing Breakage" "Bending Breakage" "Joint Gap" are happening frequently within a couple of hours after installation due to the durabilities. Because of the characteristics of Ceramic products, clay pavers are very easy to be broken when they are bumped against each other. In addition, they are relatively fragile by a freezing expansion breakage when exposed to water due to hydrophilic property as well as the intensity and absorptance of the products are varied with small difference from the production process such as production equipment and process control. Therefore, it costs a lot of money to repair the breakdown unless production and installation is carried out according to the strict criteria of the quality control. In this study, the symptoms of breakdown frequently happened in clay paver are classified by each type and finally the solution for this problem in the production of brick, installation and criteria of quality control through compressive strength and absorptance test is suggested.

Analysis of Effects of Reshoring Works on Short and Long Term Deflections of Flat Plates (플랫 플레이트 구조의 장단기 처짐 제어에 대한 동바리 재설치 작업의 효과 분석)

  • Kim, Jae-Yo;Park, Soo-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • RC flat plates may be governed by a serviceability as well as a strength condition, and a construction sequence and its impact on the distributions of gravity loads among slabs tied by shores are decisive factors influencing short and long term behaviors of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, and a reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of loads in a multi-shored flat plate system. In this study, a effect of reshoring works on short and long term deflections of flat plate systems are analyzed. The slab construction loads with various reshoring schemes and slab design and construction conditions are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking and long term effects is applied. From parametric studies, the reshoring works are verified to reduce slab deflections, and the optimized conditions for the reshoring works and slab design and constructions are discussed.

Investigation of Tar/soot Yield of Bituminous and Low Rank Coal Blends (발전용 역청탄과 저열량탄 혼소시 Tar/Soot의 배출 특성 연구)

  • Lee, Byung Hwa;Kim, Jin Ho;Kim, Gyu Bo;Kim, Seng Mo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.42-48
    • /
    • 2014
  • Soot and tar which were derived from combustion or pyrolysis processes in Puverized Coal(PC) furnace or boiler have been significantly dealing in a radiative heat transfer and an additional source of NOx. Furthermore, the increasing for the use of a coal with low caloric value gives rise to a lot of tar-soot yield and LOI in a recycled ash for using cement materials. So, the ash with higher tar-soot yield and LOI can not recycle due to decreased strength of concrete. In this study, tar-soot yields and flame structures were investigated using the LFR for a blending combustion with bituminous coal and sub-bituminous coal. Also, The investigation were conducted as each single coals and blending ratio. The coals are used in a doestic power plant. In the experimental results, sub-bituminous coal with high volatile contents shows longer soot cloud length than bituminous coal, but overall flame length was shorter than bituminous coal. Tar-soot yields of sub-bituminous coal is lower than those of bituminous coal. Combustion characteristics are different between single coal and blended coal. Therefore, finding an optimal coal blending ratio according to coal rank effects on tar-soot yields.

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.