• Title/Summary/Keyword: Strength development model

Search Result 700, Processing Time 0.03 seconds

A Study on Development Strategies of the Korean Fisheries Outlook Project based on AHP (AHP 기법을 이용한 우리나라 수산업관측사업의 추진방향에 관한 연구)

  • Nam, Jong-Oh;Nho, Seung-Guk
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.1
    • /
    • pp.25-52
    • /
    • 2010
  • The purpose of this paper is to suggest major strategies and necessary new projects for the medium- and long-term development of the Korean Fisheries Outlook Project. To suggest the Korean Fisheries Outlook Center with the above purpose, this paper employs Analytic Hierarchy Process analysis based on surveys obtained by special groups related with the KFOP. The survey is broadly composed of two goals; the medium- and long-term development directions and setting up of new furtherance projects. Each goal has upper and lower strategies respectively. The first goal, the medium- and long-term development directions, has four factors as upper strategies. The upper strategies are composed of accuracy, efficiency, timeliness, and political effectiveness of the fisheries outlook information. In addition, each upper strategy has three lower strategies respectively. For example, accuracy of the fisheries outlook information includes strength of data collection function, strength of satellite photography function, and strength of data analysis function. The second goal, setting up of new furtherance projects, has three factors as upper strategies. The upper strategies consist of accuracy promotion of outlook information using high-technique, field expansion of outlook species, and strength of analyzing function on oversea fisheries information. Each upper strategy has three lower strategies respectively. For instant, accuracy promotion of outlook information using high-technique has strength of information analysis function covered from production to consumption, strength of satellite information function, and structure of forecasting model on demand and supply by outlook species. The above upper and lower strategies were analytically drawn out through insightful interviews with special groups such as officials of the government, presidents of the producer and distributor groups, and researchers of the Korea Maritime Institute and other research institutes. As a result of AHP analysis, first, priorities of upper strategies with the medium- and long-term development directions are analyzed as accuracy, timeliness, political effectiveness, and efficiency in order. Also, priorities of all lower strategies reflecting priorities of upper strategies are examined as includes strength of data collection function on the fisheries outlook information, delivery of rapid information on outlook products for all people interested, strength of data analysis function on fisheries outlook information, strength of consumption outlook function on fish products, and strength of early warning system for domestic fish products in order. Second, priorities of upper strategies with the setting up of new furtherance projects are analyzed as accuracy promotion of outlook information using high-technique, field expansion of outlook species, and strength of analysis function on oversea fisheries information in order. In addition, priorities of all lower strategies reflecting priorities of upper strategies are examined as building up of forecasting model on demand and supply by outlook species, strength of information analysis function covering all steps from production to consumption, expansion of consumption outlook for consumers, strength of movement analysis function of oversea farming industry, and outlook expansion of farming species.

Tensile strength prediction of corroded steel plates by using machine learning approach

  • Karina, Cindy N.N.;Chun, Pang-jo;Okubo, Kazuaki
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.635-641
    • /
    • 2017
  • Safety service improvement and development of efficient maintenance strategies for corroded steel structures are undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures.

Prediction of Residual Strength of CFRP Subjected to High Velocity Impact (고속충격을 받는 CFRP 복합재료의 잔류강도 예측)

  • 박근철;김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.600-611
    • /
    • 1994
  • The purpose of this research is to propose a model for the prediction of residual strength. For this purpose, two-paremeter model based on Caprino's is developed and formulated by the ratio of indentation due to impact and normalized residual strength. The damage zone is considered only as an indentation. Impact tests are carried out on laminated composites by steel balls. Test material is carbon/epoxy laminate. The specimens are composed of $[{\pm}45^{\circ}/0^{\circ}/90^{\circ}]_2$ and $[\pm}45^{\circ}]_4$ stacking sequence and have $0.75^T{\times}0.26^W{\times}100^L(mm) dimension. A proposed model shows a good correlation with the experimental results And failure mechanism due to high impact velocity is discussed on CFRP laminates to examine the initiation and development of damage by fractography and ultrasonic image ststem. The effect of the unidirectional ply position on the residual strength is considered here.

Prediction of Concrete Compressive Strength by a Modified Rate Constant Model (수정 반응률 상수 모델에 의한 콘크리트 압축강도의 예측)

  • 한상훈;김진근;문영호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.31-42
    • /
    • 2000
  • This paper discusses the validity of models predicting the compressive strength of concrete subjected to various temperature histories and the shortcomings of existing rate constant model and apparent activation energy concept. Based on the discussion, a modified rate constant model is proposed. The modified rate constant model, in which apparent activation energy is a nonlinear function of curing temperature and age, accurately estimates the development of the experimental compressive strengths by a few researchers. Also, the apparent activation energy of concrete cured with high temperature decreases rapidly with age, but that of concrete cured with low temperature decreases gradually with age. Finally generalized models to predict apparent activation energy and compressive strength are proposed, which are based on the regression results.

Development of Flow Stress equation of High strength steel for automobile using Neural Network and Precision Roll Force Model (신경망 함수를 이용한 자동차강의 변형저항 개발 및 압연하중 예측)

  • Kwak W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.145-152
    • /
    • 2004
  • The flow stress value was calculated by comparing predicted and measured roll force. Using basic on-line roll force model and logged mill data the flow stress equation of high strength steel for automobile was derived. The flow stress equation consists of the flow stress equation of carbon steel and flow stress factor calculated by neural network with input parameters not only carbon contents, strip temperature, strain, and strain rate, but also compositions such as Mn, p, Ti, Nb, and Mo. Using the flow stress equation and basic roll force model, precision roll force model of high strength steel for automobile was derived. Using test set of logged mill data the flow stress equation was verified.

  • PDF

A Development of Longitudinal and Transverse Springback Prediction Model Using Artificial Neural Network in Multipoint Dieless Forming of Advanced High Strength Steel (초고강도 판재 다점성형공정에서의 인공신경망을 이용한 2중 곡률 스프링백 예측모델 개발)

  • Kwak, M.J.;Park, J.W.;Park, K.T.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.76-88
    • /
    • 2020
  • The need for advanced high strength steel (AHSS) forming technology is increasing as interest in light weight and safe automobiles increases. Multipoint dieless forming (MDF) is a novel sheet metal forming technology that can create any desired longitudinal and transverse curvature in sheet metal. However, since the springback phenomenon becomes larger with high strength metal such as AHSS, predicting the required MDF to produce the exact desired curvature in two directions is more difficult. In this study, a prediction model using artificial neural network (ANN) was developed to predict the springback that occurs during AHSS forming through MDF. In order to verify the validity of model, a fit test was performed and the results were compared with the conventional regression model. The data required for training was obtained through simulation, then further random sample data was created to verify the prediction performance. The predicted results were compared with the simulation results. As a result of this comparison, it was found that the prediction of our ANN based model was more accurate than regression analysis. If a sufficient amount of data is used in training, the ANN model can play a major role in reducing the forming cost of high-strength steels.

Compressive Strength Development Model for Concrete Cured by Microwave Heating Form (마이크로웨이브 발열거푸집으로 양생된 콘크리트의 압축강도발현 모델)

  • Koh, Tae-Hoon;Moon, Do-Young;Bae, Jung-Myung;Yoo, Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.669-676
    • /
    • 2015
  • Time dependent model for prediction of compressive strength development of concrete cured by microwave heating form was presented in this study. The presented model is similar to the equation which is given in ACI 209R-92 but the constants which is dependent on cement type and curing method in the presented model are modified by the regression analysis of the experimental data. Laboratory scale concrete specimens were cast and cured by the microwave heating form and drilled cores extracted from the specimens were fractured in compression. The measured core strengths are converted to standard core and in-situ strengths. These in-situ strengths are used for the regression.

Verification and application of Target Strength for Japanese anchovy (Engraulis japonicas) by theoretical acoustic scattering model (이론모델을 이용한 멸치의 음향산란강도의 검토 및 적용)

  • Hwang, Kangseok;Lee, Kyounghoon;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.487-494
    • /
    • 2012
  • Acoustical backscattering characteristics of Japanese anchovy can be estimated by Kirchhoffray mode model (KRM model) due to estimate exact body and swim-bladder shape of the fish, the samples were rapidly frozen by dry-ice and alcohol. X-ray photos for ventral and lateral direction for 6 samples were taken and the 3D coordinates of the body swim-bladder were estimated by digitizing from the photos. The angles between the axis of body and swim-bladder were about $9^{\circ}$ at 38kHz and $7^{\circ}$ at 120kHz, 200kHz. General formula of TS and BL estimated were < $TS_{38kHz}$ >=20logBL-67.3, < $TS_{120kHz}$ >=20logBL-66.6, < $TS_{200kHz}$ >=20logBL-67.0. As a result, we confirmed KRM model is very useful to estimate TS (Target Strength) for design of experiment and it also can be applied to estimate the abundance of Japanese anchovy distributed by 2 frequency difference method in the survey area.

A Study on the Early Strength Prediction of Epoxy Resin Mortars by the Maturity Method (적산온도법에 의한 에폭시 수지 모르터의 초기강도 예측에 관한 연구)

  • ;;Yoshihike Ohama
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.325-330
    • /
    • 1999
  • The objectives of this study were to compare the development of compressive strength of epoxy resin mortars used as repairing materials with respect to maturity, and to propose a predictive model for strength development of epoxy resin mortar. A series of tests were carried out for the hardener contents of 30, 40 and 50 percentage of resin and compressive strength were measured at the of 6, 12, 24, 72, 120 and 168 hours respectively under temperature of 0, 10, 20 and 3$0^{\circ}C$. The datum temperature was estimated by measured strength, and the maturity is calculated with the estimated datum temperature. The compressive strength of epoxy resin mortar could be predicted by regression analysis from the maturity-compressive strength relationship.

  • PDF

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.