• Title/Summary/Keyword: Strength decrease

Search Result 2,831, Processing Time 0.023 seconds

Mechanical Properties of Carbon/Phenolic Ablative Composites (Carbon/Phenolic 내열 복합재료의 기계적 특성)

  • Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

Studies on the Dyeing of Hanji by Natural Dye-stuffs(IV) - With a focus on the clove tree - (천연염료를 이용한 한지염색에 관한 연구(IV) - 정향나무를 중심으로 -)

  • Jeon, Cheol;Ahn, Young-Hwan;Jeon, Hyung-Ja
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.3 s.116
    • /
    • pp.66-71
    • /
    • 2006
  • The objective of this study was to find in what color Hanji(Korean hand-made paper) is dyed when it is dyed with a pigment extracted from clove tree using different kinds of mordant, and how the paper is discolored and variety of strength under the condition of accelerated aging test. The results of this experiment are as follows. The Hanji dyed with aluminum acetate mordant was colored yellowish brown at pH 4.82, discoloration after aging was as much as a slight difference of color was recognized, and the decrease of strength after aging test was small. Thus, the method using aluminum acetate mordant was usable in coloring Hanji. The second most useful Hanji dyeing moth of was using distilled water and ferrous sulfate mordant, which dyed Hanji light brown at pH 6.03. However, when pigment was extracted using distilled water and copper sulfate mordant was used, discoloration was satisfactory but strength decreased too much and pale brown was obtained. Thus, this method was not usable.

Proposition of the Removal Time of From Based on the Analysis of Strength Development of Concrete Using Blast-furnace Slag Cement (고로슬래그 시멘트를 사용한 콘크리트의 강도 증진 해석에 의한 거푸집 존치기간의 제안)

  • 표대수;유호범;한민철;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.163-168
    • /
    • 2000
  • In this paper, removal times of from from concrete using OPC( Ordinary Portland Cement) and BSC(Blast-furnace Slag cement) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values. As for the removal time of from suggested in this paper, as W/B increase, curing temperature decrease and BSC in used, removal they times of from are shown to be kept longer. Removal times of from from concrete using OPC suggested in this paper are shorter by about 2~3day than those of standard specifications provided in KCI in the rang of over $20^{\circ}C$, while they takes 4~5 day shorter compared with those of standard specifications Provided in KCI in the range of 10~$20^{\circ}C$. Removal times of from for concrete using OPC are longer than those using BSC by about 1 day.

  • PDF

A Study on the Engineering Properties of Concrete Using Blast-furnace Slag Powder (고로슬래그 미분말을 사용한 콘크리트의 공학적 특성에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kim, Dong-Seok;Park, Sang-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.49-58
    • /
    • 2000
  • There are many methods to improve the performance of concrete. Especially, granuated blast furnace slag. by-products used in concrete as the replacement material of cement, could contribute to improve the fluidity, resistance of chemical attack and strength of concrete. Also, it could contribute to decrease the rate of generating hydration heat, in addition to cost-down of concrete and prevention of enviromental pollution. Therefore, in order to establish the systemical application of granuated blast furnace slag in normal concrete, the engineering properties of concrete, such as fluidity, strength, setting and hydration properties etc.. was evaluated. In this study, replacement ratio of granuated blast furnace slag was 0, 30, 50, 70(%), and target slump was 8, 12, 15, 18(cm). Results from the experiment, granuated blast furnace slag showed the outstanding effects of improving the engineering properties of concrete. From now on, positive application of granuated blast furnace slag is expected in the point of improving the performance and cost-down of concrete.

Mix Design and Properties of Recycled Aggregate Concretes: Applicability of Eurocode 2

  • Wardeh, George;Ghorbel, Elhem;Gomart, Hector
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • This work is devoted to the study of fresh and hardened properties of concrete containing recycled gravel. Four formulations were studied, the concrete of reference and three concretes containing recycled gravel with 30, 65 and 100 % replacement ratios. All materials were formulated on the basis of S4 class of flowability and a target C35 class of compressive strength according to the standard EN 206-1. The paper first presents the mix design method which was based on the optimization of cementitious paste and granular skeleton, then discusses experimental results. The results show that the elastic modulus and the tensile strength decrease while the peak strain in compression increases. Correlation with the water porosity is also established. The validity of analytical expressions proposed by Eurocode 2 is also discussed. The obtained results, together with results from the literature, show that these relationships do not predict adequately the mechanical properties as well as the stress-strain curve of tested materials. New expressions were established to predict the elastic modulus and the peak strain from the compressive strength of natural concrete. It was found that the proposed relationship E-$f_c$ is applicable for any type of concrete while the effect of substitution has to be introduced into the stress-strain (${\varepsilon}_{c1}-f_c$) relationship for recycled aggregate concrete. For the full stress-strain curve, the model of Carreira and Chu seems more adequate.

Performance of concrete modified with SCBA and GGBFS subjected to elevated temperature

  • Palaskar, Satish Muralidhar;Vesmawala, Gaurang R.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.203-218
    • /
    • 2020
  • This research paper presents the outcomes in terms of mechanical and microstructural characteristics of binary and ternary concrete when exposed to elevated temperature. Three parameter were taken into account, (a) elevated temperature (i.e., 200, 400, 600 and 800℃) (b) binary concrete with cementitious material sugarcane bagasse ash (SCBA) and ground granulated blast furnace slag (GGBFS) replacement percentage (i.e., 0, 15, 20, 25 and 30%) and (c) ternary concrete with cementitious material SCBA and GGBFS replacement percentage (i.e., 0, 15, 20, 25 and 30%). A total of 285 standard cube specimens (150 mm × 150 mm × 150 mm) containing Ordinary Portland Cement (OPC), SCBA, and GGBFS were made. These specimens then exposed to several elevated temperatures for 2 h, afterword is allowed to cool at room temperature. The following basic physical, mechanical, and microstructural characteristics were then determined and discussed. (a) mass loss ratio, (b) ultrasonic pulse velocity (UPV) (c) physical behavior, (d) compressive strength, and (e) field emission scanning electron microscope (FESEM). It was found that compressive strength increases up to 400℃; beyond this temperature, it decreases. UPV value and massloss decrease with increase in temperature as well as the change in color and crack were observed at a higher temperature.

The effect of compressive residual stresses of two-stage shot peening for fatigue strength of spring steel (스프링강의 피로강도에 미치는 2단 쇼트 피이닝에 의한 압축잔류응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.71-79
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel(JISG4081-SUP ,SAE 9254, DIN 50CrV4, ) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

GROUND TREATMENT CASE HISTORY OFR SOFT CLAY LAYER AND EVALUATION OF ITS IMPROVEMENT (연약지반처리와 개량효과 평가사례)

  • Lee, Yeong-Nam;Lee, Hyeong-Ju;Sim, Dong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.113-120
    • /
    • 1992
  • The construction of container terminal at Brani, Singapore required the improvement of soft clay layer having the thickness of about 6.5m, average moisture content of 79.4%, liquid limit of 90.4%, plastic limit of 21.8%, field vane strength of 10 to 25 KPa, pre-consolidation pressure of 225 to 60 KPa and compression index of 0.4 to 1.0. For the improvement of this layer, Colbon drains of 1.3m spacing in triangular pattern were installed to the bottom of the layer and surcharge of more than 11.25m high sand fill was later applied to the treated area. The settlement and lateral displacement of the ground were measured and the speed of surcharge filling was controlled, based on these readings. The removal of surcharge was determinied using the estimated time for the 90% degree of consolidation under the design pressure of 180KPa. The field and laboratory test results show that the soft clay layer has been improved substantially in its strength and consolidation characteristics: increase in strength of about 50KPa and pre-consolidation pressure and decrease in void ratio and compression index.

  • PDF

Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel (고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.

Effect of Heat Treatment on Joint Strength of 300Grade 18% Ni Maraging Steel Sheet Welded with Electron Beam (전자비임 용접된 300Grade 18% Ni 마르에이징강 박판의 이음강도에 미치는 열처리의 방향)

  • Jung, B.H.;Kim, H.G.;Kang, S.B.;Kim, W.Y.;Park, H.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.185-193
    • /
    • 1993
  • The effect and Condition of heat treatment on the tensile strength of welded joint was investigated in 300 grade 18% Ni-Co-Mo-Ti maraging steel sheets welded with electron beam. A good tensile strength of welded joint was obtained by following heat treatment cycle ; At $1100^{\circ}C$ the specimen was high temperature solution treated for 1 hour and then it was repeated solution treated at $900^{\circ}C$, $820^{\circ}C$ for 1 hour respectively to recrystallize the coarsened ${\gamma}$ grain. These heat treatment cycle was completed by an final aging heat treatment at $480^{\circ}C$ for 4 hour. Moreover, dissolution of dendrite, a significant decrease in seregation of Mo, Ti in weld metal were observed and also the coarsened ${\gamma}$ grain formed at $1100^{\circ}C$, $1200^{\circ}C$ changed to fine grain due to the effect of recrystallization.

  • PDF