• 제목/요약/키워드: Strength decrease

Search Result 2,827, Processing Time 0.027 seconds

Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength (일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체)

  • Kim, Kyu Heon;Kim, Tae Rim;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Strength and Durability Properties of Concrete with Starch Admixture

  • Akindahunsi, A.A.;Uzoegbo, H.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.323-335
    • /
    • 2015
  • This paper examines some properties of concrete, such as strength, oxygen permeability and sorptivity using starch [cassava (CA) and maize (MS)] as admixtures. Concrete cubes containing different percentages of the CA and MS by weight of cement (0, 0.5, 1.0, 1.5 and 2.0 %) were cast. Compressive strength tests were carried out after 3, 7, 14, 21, 28, 56, 90, 180, 270 and 365 days of curing. Oxygen permeability and sorptivity tests were carried out on another set of concrete specimens with the same percentages of starch at 7, 28, 90, 180, 270 and 365 days. Oxygen permeability and sorptivity tests data obtained were subjected to Kruskal-Wallis one-way analysis of variance by ranks. The strength increase after 1 year over the control for CA 0.5 and CA 1.0 are 2.7 and 3.8 % respectively, while MS 0.5 and MS 1.0 gave 1.5 % increase over control. These results showed a decrease in oxygen permeability and rates of sorptivity, with concretes containing starch as admixtures giving better performance than the control concretes.

The Importance of Size/scale Effect in the Failure of Composite Structures (복합재료 구조물의 파괴에 대한 치수효과의 중요성)

  • Kim, Duk-Hyun;Kim, Doo-Hwan
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper, the importance of the size effects on the strength ratio is demonstrated by numerical results. The rate of decrease of tensile strength is for glass fiber, based on the experience of a composite manufacturing specialist. For other material, similar procedure may be used until detailed test result on such material is available. The strength criterion used is that of Tsai-Wu fur stress space. The factors influencing the ratio are, reducing the tensile strength alone or both tensile and compression strengths, selection of the normalized interaction term, that is, the generalized von Mises criterion or the Hill's criterion, and the status of applied stresses. Some of the numerical results are presented for a guideline for the future study.

A Study on Mechanical Properties of Wood-Polymer Composites due to Environmental Characteristic (목재 고분자 복합재료의 환경 특성에 따른 기계적 물성연구)

  • Lee, Joong-Hee;Jeon, Sang-Jin;Heo, Seok-Bong;Kim, Hong-Gun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.91-94
    • /
    • 2005
  • Polypropylene as a matrix has been used for wood polymer composites(WPC). In preparing WPC, the coupling agent, Polypropylene grafted Maleic Anhydride(PP-G-MA) was used in order to obtain a good interfacial bonding force between matrix and fillers and dispersion of wood powders. In this study, the effects of wood powder contents and water absorption on the mechanical properties were experimentally investigated. The tensile strength and flexural strength of composites reached its peak value when the wood powder content was around 60 wt%. However, the peak value of the impact was observed about 30 wt% of wood powder content. The tensile strength and flexural strength increase with increasing the wood power contents. But the impact strength decrease with increasing the wood powder contents. The slight change was observed with the water absorption in the WPC. The optimal condition of the compositions such as Anti-oxidant and UV stabilizers for the outdoor application was suggested in this research.

  • PDF

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement

  • Ho, J.C.M.;Luo, L.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.889-910
    • /
    • 2012
  • Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

The Effect of Transverse Abdominal Exercise for 3Weeks for Lumbar Muscle Strength and Pain Relief on Chronic Low Back Pain Patients (3주간의 복횡근 강화운동이 만성요통 환자의 요부근력과 통증완화에 미치는 영향)

  • Lee, Seungjun;Lee, Geoncheol;Bae, Wonsik;Jung, Hansin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.3
    • /
    • pp.9-17
    • /
    • 2013
  • Purpose : The purpose of this study was to analyze the effects of transverse abdominal exercise on the change of chronic low back pain and lumbar muscle strength. Method : 18 chronic lumbago patients were transverse abdominal exercise for 3weeks. Result : 1. The strength of the lumbar extensor and flexor of the male subjects was increased significantly after abdominal exercise(p<0.05). 2. The strength of the lumbar extensor and flexor of the female subjects was increased significantly after abdominal exercise(p<0.05). 3. The study can confirm significant relationship between the lumbar muscle strength and lumbar pain before and after the exercise Conclusion : The study of could find the increase of the ability of the lumbar extensor and flexor of both male and female subjects suffering from chronic low back and pain using three-week transverse abdominal exercise. The study confirmed the general decrease of pain after the experiment.

Experimental Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 1) - (동적하중 하에서의 강도적 불균질재의 연성크랙 발생거동의 실험적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제1보) -)

  • ;Mitsuru Ohata;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.575-581
    • /
    • 2003
  • It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on ductile crack initiation behavior. Also, the ductile crack initiation testing were conducted under static and dynamic loading using round bar specimens with circumferential notch and strength mis-matching. The result showed that the nominal strain at ductile crack initiation of circumferential notch specimens small then the round bar specimens for effect of geometrical discontinuity. Also, the nominal strain at ductile crack initiation was decreased with decrease of notch root radius of curvature.

Effect of Cyclic Drying-Wetting on Compressive Strength of Decomposed Granite Soils (습윤-건조 반복작용으로 인한 화강풍화토의 압축강도 특성 변화 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic wetting-drying on the compressive strength characteristics of decomposed granite soils. A series of plane strain compression (PSC) tests were performed on test specimens with varying fine contents under different wetting-drying cycles to investigate the change in compressive strength under the process of wetting-drying cycles. The effect of wetting-drying cycles on the structural particle rearrangement at a micro-scale level was also examined using scanning electron microscope (SEM) tests. It was shown that the soil containing larger fines showed more significant decrease in compressive strength compared with the soils with less fines. Also found was that the wetting-drying cycle did not have significant effect on the particle arrangement.

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.