• Title/Summary/Keyword: Strength decrease

Search Result 2,827, Processing Time 0.037 seconds

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

Relationship between Fat-Free Mass and Grip Strength, Nutrient Intakes, Exercise Behavior in Middle- and Old-Aged Women (중년기, 노년기 여성에서 무지방조직과 악력, 식이섭취 및 운동습관과의 관계)

  • 이옥희
    • Journal of Nutrition and Health
    • /
    • v.34 no.4
    • /
    • pp.449-457
    • /
    • 2001
  • This study was performed to show change of fat-free mass(FFM), representing mostly the muscle mass change, and muscle strength with increasing age, and relationship between dietary, exercise behaviors and FFM in healthy middle-and old aged women who are of age over 55 years. The FFM and correspondingly hand grip strength showed significant positive correlation with age. But concentration of serum albumin showed no significant relationship with age. The subjects were categorized into groups according to FFM tertile. The anthropometry such as weight, BMI, fat mass, circumferences of waist and hip, WHR, and hand grip strength decreased significantly in the lowest FFM group. But the albumin level showed no change according to FFM level. The FFM showed significant correlation with nutrient intakes such as energy, carbohydrate, protein, Fe, P, Ca. No association, however, was shown with exercise behavior probably because of no case with resistance exercise habits. The variance of FFM was explained 55.2% by height and carbohydrate intake. The variance of height-adjusted FFM could be explained only 16.2% by intake amount of carbohydrate. In conclusion, the decrease of FFM may cause to reduce muscle strength in female elderly. The increasing nutrient intakes were associated with the increased FFM and may protect from risk of sarcopenia. However, only the carbohydrate intake could influence independently the FFM in middle- and old-aged women. The FFM has no association with endurance exercise habits. (Korean J Nutrition 34(4) : 449∼457, 2001)

  • PDF

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

The Static Strength Analysis of Prying Action for T-flange Shape Structure Using F10T High Strength Bolt (F10T 고장력 볼트를 이용한 T-형 플랜지형 구조물의 Prying Action에 따른 정적강도 해석)

  • Park, Myung-Kyun;Lee, Joong-Won;Koo, Bon-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents and discusses the experimental results on the F10T high strength bolts used in the T-flange joint structure. The experimental works were carried out for the parameters which are flange web thickness, the distance between bolts, prying ratio. The results show that the working stress imposed to bolts decreases as the flange web thickness increases on the other hand the imposed stress to the bolts increases as the distance between two bolts increases. In other words the strength of the T-flange joint increased as the web flange thickness increases and the distance between two bolts decreases. The prying ratio is increased as the distance between two bolts increases and as the flange web thickness decreases However, the degree of stress decrease in flange thickness variation is not that high as the distance variation between two bolts. Finally the equation for predicting the failure stress in T-flange joint structure using F10T high strength bolts was suggested.

Reliability of Fine Pitch Solder Joint with Sn-3.5wt%Ag Lead-Free Solder (Sn-3.5wt%Ag 비납솔더를 이용한 미세피치 솔더접합부의 신뢰성에 관한 연구)

  • 하범용;이준환;신영의;정재필;한현주
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.89-96
    • /
    • 2000
  • As solder becomes small and fine, the reliability and solderability of solder joint are the critical issue in present electronic packaging industry. Besides the use of lead(Pb) containing solders for the interconnections of microelectronic subsystem assembly and packaging has enviromental problem. In this study, using Sn/Pb and Sn/Ag eutectic solder paste, in order to obtain decrease of solder joint strength with increasing aging time, initial solder joint strength and aging strength after 1000 hour aging at $100^{\circ}C$ were measured by peel test. And in order to obtain the growth of intermetallic compound(IMC) layer thickness, IMC layer thickness was measured by scanning electron microscope(SEM). As a result, solder joint strength was decreased with increasing aging time. The mean IMC layer thickness was increased linearly with the square root of aging time. The diffusion coefficient(D) of IMC layer was found to $1.29{\times}10^{-13}{\;}cm^2/s$ at using Sn/Pb solder paste, 7.56{\times}10^{-14}{\textrm}{cm}^2/s$ at using Sn/Ag solder paste.

  • PDF

The Evaluation of Geotextiles by Ultraviolet(UV) Effect during the Landfill Construction (폐기물 매립지의 부직포 포설시 UV 영향에 대한 평가)

  • 고재학;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.206-215
    • /
    • 1998
  • Using of geosynthetics with linear materials(sand, gravel, clay soil) is rapidly increased in landfill. With geosynthetics, geotextiles often expose to solar radiation(Ultraviolet) on long terms during the installation. In this paper, the results will represent the strength retention rate and tensile retention rate of geotextiles between outdoor exposed and protected by 15cm thickness of soil. As a result of cumulating solar radiation in geotextiles was increased, the strength retentions rate of P.P(500g/$m^2$), P.P(700g/$m^2$) and P.P(1000g/$m^2$) were decreased and the lower weight of unit area of geotextiles, the faster decrease of strength retention rate. P.E.T(600g/$m^2$) was showed a distinctive trend that the strength retention rate increased. The tensile retention rate of tested geotextiles was decreased during the simulation. However, the strength and tensile retention rate of geotextiles covered by soil had changed insignificantly. Therefore, it can surmise that the soil covering will help geotextiles to be protected from UV effecting

  • PDF

Charactetistics of Cement-Fly Ash Paste Containing High Early Strength Admixtures (조강제를 함유한 플라이애쉬 시멘트 페이스트의 특징)

  • 이진용;조현수;이선우;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.51-56
    • /
    • 2000
  • Fly ash used as a cement replacement material increases the long term strength and also improves the durability of concrete and mortar. However, the use of fly ash is a little in spite of great benefit. In order to increase the consumption of fly ash, it has to be used as a cement replacement materials in the production of mortar and concrete, and the reduction of early strength development due to the use of fly ash also has to be diminished. In this study, many chemical compounds which accelerate the early strength was investigated. The $Na_2$$SO_4$, $K_2$$SO_4$, Triethanolamine were selected and applied to the production of mortar. It was found that they enhance the early strength development of mortar(1, 3day) and decrease the amount of $Ca(OH)_2$, and also increase the production of ettringite. According to the results of mercury instruction test, the pores ranged from 0.01 $\mu\textrm{m}$ to 5$\mu\textrm{m}$ were decreased and it was also found in the analysis of X ray and SEM that fly ash increases the amount of ettringite at early ages.

Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints (열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가)

  • Chung, Chin Sung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

Effect of Austempering Treatment on Damping Capacity and Mechanical Properties in Gray Cast Iron (회주철의 진동감쇠능과 기계적 성질에 미치는 오스템퍼링처리의 영향)

  • Han, D.W.;Kim, J.C.;Son, Y.C.;Baik, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.108-116
    • /
    • 1999
  • Gray cast iron with a high damping capacity has been used for controlling the vibration and noise in various mechanical structures. Nevertheless, its usage has been often restricted due to its poor tensile strength. Therefore, it is necessary to improve tensile strength at the expense of a loss in damping capacity. This study is aimed at finding the best combination of tensile strength and damping capacity by varying austempering time and temperature range from $320^{\circ}C$ to $380^{\circ}C$ after austenization at $900^{\circ}C$ for 1hr. The effect of austempering condition on hardness and the volume fraction of retained austenite is investigated as well. The results obtained are summarized as follows : (1) With an increase in austempering temperature, both tensile strength and hardness decrease while damping capacity improves. (2) Austempering at $350^{\circ}C$, resulting in a mixture of upper and lower bainite with partially retained austenite, exhibits the optimum combination of tensile strength and damping capacity.

  • PDF

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.