• 제목/요약/키워드: Strength decrease

검색결과 2,827건 처리시간 0.03초

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

강도 변화에 따른 한중콘크리트 특성연구 (Characteristic of Cold-Weather Concrete by the Variation of Compressive Strength)

  • 신성우;김인기;안종문
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.154-159
    • /
    • 1995
  • Cold weather concrete presents the many characteristic variation of quality, according to the mixing and cooling point, the cooling time and the quantity of air besides the compressive strength of concrete. Thus, in this study to verify the character of cold-weather concrete we make the concrete specimens at laboratory and cool them at cooling-melting machine and then test the 7days compressive strength of them, with the variation of compressive strength of concrete, cooling point, cooling time, cooling weather and air quantity. At the results, the compressive strength of concrete decrease in the case of early cooling point, long cooling time, low cooling temperature and the low design compressive strength

  • PDF

Effects of Reactive Diluents on the Electrical Insulation Breakdown Strength and Mechanical Properties in an Epoxy System

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.199-202
    • /
    • 2013
  • In order to study the effect of reactive diluents on the electrical insulation breakdown strength and mechanical properties of, a polyglycol and an aliphatic epoxy were individually introduced to an epoxy system. Reactive diluents were used in order to decrease the viscosity of the epoxy system; polyglycol acted as a flexibilizer and 1,4-butanediol diglycidyl ether (BDGE) acted as an aliphatic epoxy, which then acted as a chain extender after curing reaction. The ac electrical breakdown strength was estimated in sphere-to-sphere electrodes and the electrical breakdown strength was estimated by Weibull statistical analysis. The scale parameters of the electrical breakdown strengths for the epoxy resin, epoxy-polyglycol, and epoxy-BDGE were 45.0, 46.2, and 45.1 kV/mm, respectively. The flexural and tensile strengths for epoxy-BDGE were lower than those of the epoxy resin and those for epoxy-polyglycol were lower than those of the epoxy resin.

선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성 (Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials)

  • 차경섭;장병욱;우철웅;박영곤
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

콘크리트의 휨압축강도에 미치는 부재길이의 영향 (Effects of Specimen Length on Flexural Compressive Strength of Concrete)

  • 김진근;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.579-584
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios(from 1, 2, 3 and 4) of specimens with compressive strength of 58 MPa. Results indicate that the reduction in flexural compressive strength with increase of length-to-width ratios was apparent. A model equation was derived using regression analyses on the experimental data. It was also founded that the effect of specimen length on ultimate strain was negligible, but its effect of the ultimate load and the displacement at center of specimen was distinct. Finally more general model equation is also suggested.

  • PDF

3성분계 혼화재료로 사용한 콘크리트 특성 (Properties of Concrete Containing third binary mineral Admixture)

  • 조일호;양재성;김진희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.95-101
    • /
    • 1999
  • This study was performed to evaluate the characteristics of workability and strength of the concrete containing mineral admixtures such as flyash, blast furnace slag, zeolite powder. As a result, considering their workability and strength, the optimum replacement ratio of them to plain concrete were obtained for each ternary admixture. This increased compressive strength was ascribed to both the closer parkinof fine particles and pozzolan reactivity of powders. This work showed that could be effectively utilized as a blending material without any decrease in the strength of early hydration stage. On the other hand, we found that the compressive strength at early ages ternary ordinary and high strength concrete untill 7 days was small, but that ternary concrete at 28days was highly increased about 31% and 15% extent.

  • PDF

고강도 콘크리트의 취도계수에 관한 실험적 연구 (An experimental study on the fragility factor of high strength concrete)

  • 김희두;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

초기동해를 입은 콘크리트의 압축강도에 미치는 영향인자에 관한 연구 (A Study of Influencing Factors on Compressive Strength of Concrete Frozen at Early Ages)

  • 배수원;김진근;권기주;정원섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.527-532
    • /
    • 2003
  • When fresh concrete is exposed to sufficiently low temperature, the free water in the concrete is cooled below its freezing point and transforms into ice, which causes decrease in compressive strength of concrete. Of the many influencing factors on the loss of compressive strength, the age of concrete at the beginning of freezing, water-cement ratio, and cement-type are significantly important. The objective of this study is to examine how the these factors affect the compressive strength of concrete frozen at early ages. The results from the tests showed that as age at the beginning of freezing is delayed and water-cement ratio is low, the loss of compressive strength decreases. In addition, concrete made with high-early-strength cement is less susceptible to frost damage than concrete made with ordinary portland cement.

  • PDF

화학적 침식에 의한 숏크리트의 압축강도 특성 (Uniaxial Compressive Strength Characteristic of Shotcrete Immersed in Chemical Solution)

  • 이규필;김동규;배규진;김홍삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1291-1298
    • /
    • 2005
  • Shotcrete for the support of tunnel can contact with groundwater. The hazardous components in the groundwater cause the corrosion of shotcrete. Also, the hazardous components may deteriorate the engineering properties of shotcrete, such as compressive strength, bond strength, and flexural strength. The more the effect of the hazardous components on the shotcrete may increase, the more the stability of tunnel structure may decrease. It was analyzed to find the hazardous components in the ground water. The uniaxial compressive strength test, XRD, SEM were conducted to evaluate the durability and corrosion of shotcrete. These tests were performed on shotcrete specimens at 2, 4, 8, and 16 weeks. The specimens were immersed in various chemical solutions including hazardous components after the specimens were made at the construction site.

  • PDF

지르코니아 세라믹 연삭시 표면조도와 굽힘강도에 관한 연구 (A Study on the Surface Roughness & Bending Strength for Zirconia Ceramic Grinding)

  • 하상백;최환;이종찬
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.131-136
    • /
    • 2000
  • This paper is concerned with the surface roughness and the bending strength of ground workpiece in ZrO2 ceramic grinding. Surface roughness was measured with surface tracer and bending strength value was obtained by three-point bending test on machining center using tool dynamometer. Grinding experiments were carried out to examine the effects of grinding conditions including diamond mesh size, table speed, and depth of cut on ground surface roughness. The correlation between surface roughness and bending strength was also inspected. The experimental results indicate that the rougher surface is produced as the mesh size of diamond wheel is reduced and table speed is increased, but surface roughness is not affected by depth of cut. The values of bending strength decrease as the values of Ra, Rmax and Ku increase.

  • PDF