• Title/Summary/Keyword: Strength calculation

Search Result 653, Processing Time 0.032 seconds

A Spring Back Calculation Model for the Sensitivity Analysis of Tube Design Parameters of Helical Steam Generator

  • Kim, Yong-Wan;Kim, Jong-In;Huh, Hyung;Park, Jin-Seok;Kim, Ji-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.355.2-355
    • /
    • 1999
  • The spnng back phenomena occurring in the coiling process of a steam generator tube induces the dimensional inaccuracy and makes the coiling procedure difficult. In this research, an analytical model was developed to evaluate the amount of the spring back for SMART steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.rocess.

  • PDF

An Experimental Study on the Structural Behavior of Reinforced Concrete Beam with External Adhesion of CFRP Grid (격자형 탄소섬유강화플라스틱의 외부부착 보강에 따른 철근 콘크리트 보의 구조적 거동에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Geon-Woo;Kim, Jin-Sup
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2021
  • The study presents the ductility reinforcement effect of the RC bending member using the CFRP Grid as an experimental result. Experimental variables include a non-reinforced RC bending member (ORI), a bottom reinforced RC bending member (REB), and an RC bending member reinforced at the bottom and side (REBS). The experiment was carried out with four points bending test. As a result of the experiment, it was confirmed that the maximum bending strength increased by 17-20% through reinforcement. In addition, the ductility index calculation results confirmed that the ductility index of REB and REBS increased by 2 and 3 times, respectively, compared to the ORI.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam (U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

A unified approach to shear and torsion in reinforced concrete

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.691-703
    • /
    • 2021
  • Reinforced concrete (RC) beams can be subjected to a complex combination of shear forces (V), torsional moments (T), flexural moments (M) and axial loads (N). This paper proposes a unified approach for the analysis of these elements. An existing model for the analysis of orthogonally reinforced concrete membrane elements subjected to in-plane shear and normal stresses is generalized to apply to the case of beams subjected to the complex loading. The combination of V and T can be critical. Torsion is modelled using the hollow-tube analogy. A direct equation for the calculation of the thickness of the equivalent hollow tube is proposed, and the shear stresses caused by V and T are combined using a simple approach. The development and the evaluation of the model are described. The calculations of the model are compared to experimental data from 350 beams subjected to various combinations of stress-resultants and to the calculations of the ACI and the CSA codes. The proposed model provides the most favorable results. It is also shown that it can accurately model the interaction between V and T. The proposed model provides a unified treatment of shear in beams subjected to complex stress-resultants and in thin membrane elements subjected to in-plane stresses.

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

Comparison and optimization of deep learning-based radiosensitivity prediction models using gene expression profiling in National Cancer Institute-60 cancer cell line

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3027-3033
    • /
    • 2022
  • Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.

Prediction of Bending Angle of Bellows and Stability Analysis of Pipeline Using the Prediction (벨로우즈형 신축관이음의 휨각도 예측 및 이를 이용한 배관계의 안정성 해석)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.827-833
    • /
    • 2022
  • In this study, the prediction of the bending angle for the 350 A bellows-type expansion joints and the structural stability according to the load were determined. The stability of the 2km piping system was predicted by applying the allowable bending angle of the expansion pipe joint obtained from the analysis. The maximum bending angle was calculated through bending analysis of the bellows-type expansion joints, and the maximum bending angle by numerical calculation was about 1.8°, and the maximum bending angle of the bellows obtained by comparing the allowable strength of the material was about 0. 22°. This angle was very stable compared to the allowable bending angle (3°) of the expansion pipe joint regulation. By applying the maximum bending angle, the allowable maximum deflection of the 2 km pipe was about 3.8 m. When the seismic load was considered using regression analysis, the maximum deflection of the 2km pipe was about 142.3mm, and it was confirmed that the bellows-type expansion joints and the deflection were stable compared to the allowable maximum deflection of the pipe system. These research results are expected to present design and analysis guidelines for the construction of piping and the development of bellows systems, and to be used as basic data for systematic research.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

Assessing Commercial CLEANBOLUS Based on Silicone for Clinical Use

  • Son, Jaeman;Jung, Seongmoon;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • Purpose: We investigated the properties of CLEANBOLUS based on silicone with suitable characteristics for clinical use. Methods: We evaluated the characteristics of CLEANBOLUS and compared the results with the commercial product (Super-Flex bolus). Also, we conducted physical evaluations, including shore hardness, element composition, and elongation break. Transparency was investigated through the measured absorbance within the visible region (400-700 nm). Also, dosimetric characteristics were investigated with surface dose and beam quality. Finally, the volume of unwanted air gap was investigated based on computed tomography images for breast, chin, and nose using Super-Flex bolus and CELANBOLUS. Results: CLEANBOLUS showed excellent physical properties for a low shore hardness (000-35) and elongation break (>1,000%). Additionally, it was shown that CLEANBOLUS is more transparent than Super-Flex bolus. Dosimetric results obtained through measurement and calculation have an electron density similar to water in CLEANBOLUS. Finally, CLEANBOLUS showed that the volume of unwanted air gap between the phantom and each bolus is smaller than Super-Flex bolus for breast, chin, and nose. Conclusions: The physical properties of CLEANBOLUS, including excellent adhesive strength and lower shore hardness, reduce unwanted air gaps and ensure accurate dose distribution. Therefore, it would be an alternative to other boluses, thus improving clinical use efficiency.

A Study on the Failure Characteristic of Excavation Puddle by LPG Explosion using AUTODYN (LPG 폭발로 인한 건설현장 굴착웅덩이의 구조물 파손 특성에 관한 연구)

  • Kim, Eui Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.58-65
    • /
    • 2022
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LPG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LPG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LPG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LPG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LPG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure destruction and damage behavior. The analyses showed that the generated stresses of the structures were lower than the compressive strengths in cases 1(two lane) and 2(four lane), while the generated stress in case 3(six lane) was 8.68e3 kPa, which exceeded the compressive strength of 5.89e3 kPa.