• Title/Summary/Keyword: Strength Increment Ratios

Search Result 20, Processing Time 0.023 seconds

Analysis on Reinforcing Effect at Fixed Part of Compression Anchor by Laboratory Element Tests (실내요소실험에 의한 압축형 앵커의 정착부 보강효과 분석)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.49-55
    • /
    • 2002
  • The compression anchor is characterized by decrement of progressive failure, simple site work, economy and durability compared with tension anchor. In this paper, compression anchor is analysed through the laboratory element tests. The formula to be estimate the grout strength in fixed part of compression anchor and the effective reinforcement method for several types of soil were suggested. The following conclusions were made from this study : (1) A formula, which is able to calculate the grout strength in the fixed part of the compression anchor, is suggested. (2) The strength increment ratios( $R_{si}$) are 100%, 132%, 147%, 217% according to the reinforcement method of grout. The reinforcement method is Non, Outside spiral, Inside-Outside spiral, Steel pipe, respectively. (3) The strength increment ratios( $R_{si}$) by reinforcing can be 8.23 times the strength increment effect according to the reinforcement types and ground confining pressure. (4) The steel pipe reinforcement is most effective in decomposed soil while, in the case of hard rock ground, high confining pressure is exerted on the grout, so there is no need to use reinforcements.

Shear and impact strength of waste plastic fibre reinforced concrete

  • Karanth, Savithri S;Ghorpade, Vaishali G;Rao, H Sudarsana
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.173-182
    • /
    • 2017
  • This paper is aimed at determining the shear and impact strength of waste plastic fibre reinforced concrete. M30 grade of concrete is prepared with waste plastic door fibres cut into 5 mm width and aspect ratios of 30, 50, 70, 90 and 110. Fibres are used in a volume fraction of 0 to 1.5% with an increment of 0.25%. L shaped specimens are cast for shear strength tests and flat plates of size $250{\times}250{\times}30mm$ are used for impact tests. "Drop ball method" is used for checking the impact strength. Shear strength is checked with L shaped specimens under UTM with a special attachment. It was found that up to 1.25% of waste plastic fibres can be effectively used for better strength of concrete both in shear and impact. Shear and impact strength were found to be increasing up to a volume fraction of fibres of 1.25%.

Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure (SFRC구조물의 휨거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios (물-결합재 비와 잔골재-결합재 비에 따른 알칼리 활성화 슬래그 모르타르의 기초특성)

  • Kim, Tae-Wan;Hahm, Hyung-Gil;Lee, Seong-Haeng;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2013
  • This study investigates the fundamental properties of the water-binder (W/B) ratio and fine aggregate-binder (F/B) ratio in the alkali-activated slag cement (AASC) mortar. The W/B ratios are 0.35, 0.40, 0.45, and 0.50, respectively. And then the F/B ratios varied between 1.00 and 3.00 at a constant increment of 0.25. The alkali activator was an 2M and 4M NaOH. The measured mechanical properties were compared, flow, compressive strength, absorption, ultra sonic velocity, and dry shrinkage. The flow, compressive strength, absorption, ultra sonic velocity and dry shrinkage decreased with increases W/B ratio. The compressive strength decreases with increase F/B ratio at same W/B ratio. Also, at certain value of F/B ratio significant increase in strength is observed. And S2 (river sand 2) had lower physical properties than S1 (river sand 1) due to the fineness modulus. The results of experiments indicated that the mechanical properties of AASC depended on the W/B ratio and F/B ratio. The optimum range for W/B ratios and F/B ratios of AASC is suggested that the F/B ratios by 1.75~2.50 at each W/B ratios. Moreover, the W/(B+F) ratios between 0.13 and 0.14 had a beneficial effect on the design of AASC mortar.

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • Choi Sokhwan;Lee Myung;Lee Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.

Strength Estimation Model of Early-Age Concrete Considering Degree of Hydration and Porosity (수화도와 공극률을 고려한 초기재령 콘크리트의 강도 예측 모델)

  • 황수덕;이광명;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Maturity models involving curing temperature and curing ages have been widely used to predict concrete strength, which can accurately estimate concrete strength. However, they may not consider physical quantities such as the characteristics of hydrates and the capillary porosity of microstructures associated with strength development. In order to find out the effects of both factors on a strength increment, the hydration model and the estimation method of the amount of capillary porosity were established, and the compressive strength test of concrete nth various water/cement ratios was carried out considering two test parameters, curing temperature and curing age. In this study, by analyzing the experimental results, a strength estimation model for early-age concrete that can consider the microstructural characteristics such as hydrates and capillary porosity was proposed. Measured compressive strengths were compared with estimated strengths and good agreements were obtained. Consequently, the proposed strength model can estimate compressive strength of concrete with curing age and curing temperature within an acceptable error.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Drift Design Method of Steel Moment Frames by using Column-Beam Strength Ratios and Unit-Load Method (기둥-보 휨강도비와 단위하중법을 이용한 철골모멘트골조의 강성설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.

Bond Characteristics of High-Strength Light-Weight Concrete (고강도 경량 콘크리트의 부착특성)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Choi, Myung-Shin;Kim, Hyun-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.77-84
    • /
    • 1999
  • Recently, it is increased the use of High-Strength Light-Weight Concrete(HLC) in the high-rise buildings and mega-structures. But there are a few research on the bond behavior of HLC, so it need to study about that. The present study was performed to investigate the bond characteristics of HLC. Major test variables include concrete compressive strength(f'c), concrete cover(c), bond length (${\ell}_{db}$), and bar diameter($d_b$). Test results indicate that the bond stress of HLC is increased with the increment of $\sqrt{f'_c}$ and concrete cover, bond stress is decreased with increment of bond length and bar diameter. And the final failure mode such as splitting or pullout failure is significantly affected by the concrete cover to bar diameter ratios(C/$d_b$). Test results were compared with ACI code and other proposed equations. The bond stress of HLC is higher than that of normal-strength normal-weight concrete, but lower than that of high-strength normal-weight concrte. Considering the present test results, modification factor(${\lambda}$= 1.3) of bond length in ACI 318-95 code for light-weight concrete is may have to be reviewed to apply to HLC.

Postbuckling Compressive Strengths of Composite Laminated Cylindrical Panels (복합적층 원통판넬의 좌굴후 압축강도)

  • 권진희;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.958-966
    • /
    • 1994
  • The postbuckling compressive strengths of $[0/90/\pm\theta]_s$ composite laminated cylindrical panels with various fiber angles and width-to-length ratios are characterized by the nonlinear finite element method. For the iteration and load-increment along the postbuckling equilibrium path a modified arc-length method in which the effect of failure can be considered is introduced. In the progressive failure analysis the maximum stress criterion and complete unloading model are used. Present finite element results show good agreement with experiments for $[0_3/90]_s$ cylindrical panel and $[0/\pm45/90/]_s$ plate. The postbuckling compressive strength of $[0/90/\pm\theta]_s$ composite laminated cylindrical panel is independent of the initial buckling stress but high in the panel with large value of the bending stiffness in axial direction. In the several cylindrical panels, it is observed that the prebuckling compressive failures occur and result into the collapse before the buckling.