• Title/Summary/Keyword: Strength Factor

Search Result 2,815, Processing Time 0.025 seconds

The Need for Research about Buckling Strength of Arch and Beam (보와 아치의 좌굴강도에 관한 연구의 필요성)

  • Lim, Nam-Hyoung;Lee, Chin-Ok;Ryu, Hyo-Jin;Lee, Woo-Chul;Koo, So-Yeun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Limit Equilibrium Method and Distinct Element Method (한계평형법과 개별요소법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.643-650
    • /
    • 2002
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered as unstable since the discontinuities whose orientations are similar to the orientation of the failure plane, are observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not obtained in limit equilibrium method, the UDEC and shear strength reduction technique were used in this study Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

  • PDF

Feasibility Study the Assessment Factor of Quality Performance Index in Expressway Concrete Pavement (고속도로 콘크리트 포장에 대한 품질평가지수 평가인자의 적정성 검토)

  • Lee, Seung Woo;Kim, Gyung il;Ko, Dong Sig;Hong, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.133-141
    • /
    • 2017
  • Traffic volume increases according to highway expansion and industrial development which causes repetitive defect and durability degradation on pavement. The research of quality assurance system used abroad has introduced Korea. Korea Expressway Corporation (KEC) has developed a Quality Performance Index (QPI) that quantitatively assesses the level of quality of the final product, and practical applications. Assessment factor on concrete pavement consisted of pavement thickness, compressive strength, IRI and spacing factor. Assessment factor on concrete pavement is determined by empirical evaluation factor from abroad. In this study, analysis of evaluation factors of concrete pavement by using pavement life prediction simulation and measured data were evaluated with consideration of feasibility of the assessment factor. Pavement life, performance and durability are affected by pavement thickness, compressive strength, IRI and spacing factor in assessment factor on concrete pavement, QPI.

Evaluation of the Response Modification Factor for RC Wall-type Structures (철근콘크리트 벽식 구조물의 반응수정계수 평가에 관한 연구)

  • 한상환;이리형;오영훈;천영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.433-438
    • /
    • 1998
  • Design lateral strength calculated by current seismic design code is prescribed to be much lower than the force level required for a structure to respond elastically during design level earthquake ground motion. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factor known as "response modification factor, R". This factor accounts for the inherent ductility, overstrength, redundancy, and damping of a structural system. This study considers ductility and overstrength of the wall-type structure for investigating R factor. This means that R factor is determined from the product of "ductility-based R factor($R_$\mu$$) and overstrength factor($R_s$). $R_$\mu$$ factor is calibrated to attain the targer ductility ratio (system ductility capacity) and produced in the from of $R_$\mu$$ spectra considering the influence of target ductility, natural period, and hysteretic model. On the other hand, $R_s$ is more difficult to quantify, since it depends on both material and system-dependent uncertain parameters. In this study Rs factor was determined from the result of push-over analysis.-over analysis.

  • PDF

A Study of Strength Reduction Factor Preparation for Circular Concrete Columns confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형 콘크리트 기둥의 강도감소계수 제안에 관한 연구)

  • Lee, Kyoung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.106-112
    • /
    • 2016
  • In this study, circular concrete column specimens confined by carbon sheet tube with different winding angles and different number of carbon sheet plies(3T, 5T and 7T) were tested to propose design equations and a strength reduction factor. Specimens were designed by 300 mm diameter and 600 mm height with $90^{\circ}{\pm}0^{\circ}$, $90^{\circ}{\pm}30^{\circ}$, $90^{\circ}{\pm}45^{\circ}$, $90^{\circ}{\pm}60^{\circ}$, $90^{\circ}{\pm}75^{\circ}$ and $90^{\circ}{\pm}90^{\circ}$ carbon fiber angles. A 10,000 kN UTM was used for compressive strength test of specimens by displacement control method with 0.01 mm/sec velocity. Estimation equations of compressive strength and ultimate strain of circular concrete column specimens confined by carbon sheet tube using a regression analysis and a strength reduction factor to apply ultimate strength design method of concrete were proposed. The strength reduction factor(${\phi}$) of circular concrete columns confined by carbon sheet tube was estimated as 0.64 by the Monte Carlo Analysis Method. Manufacture and construction process have to be perfectly managed by construction managers because the structural capacities of carbon tubes were depends on construction abilities of manufacturing operators.

Effects of defence holes on notched strength and fatigue properties in plain woven composite (평직복합재의 노치강도 및 피로특성에 미치는 보조원공의 영향)

  • Kim, Jung-Kyu;Shim, Dong-Suk;Han, Min-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1965-1971
    • /
    • 1997
  • The relaxation of stress concentration in notched members can be very significant in the improvement of notched strength and fatigue life. This paper investigated the relationship of stress concentration factor, and notched strength and fatigue life. The stress concentration factors were analyzed by FEM. Uniaxial tensile and fatigue tests were carried on plain woven composite specimens which have a main hole and two defence holes. From experimental results, the notched strength and the fatigue limit increased up to about 50% and 30% respectively due to the reduction in stress concentration. The fatigue lives predicted by Juvinall's approach were underestimated than test results and this trends were remarkable as nothed strength increased. This is because of the underestimation of a coefficient. A in S-N curve (.sigma.$_{ar}$ =A $N_{f}$ $^{B}$). Therefore, considering notched strength the coefficient A was modified. The fatigue lives by this process were agreed well with the experimental results.sults.

Effect of fly ash and GGBS combination on mechanical and durability properties of GPC

  • Mallikarjuna Rao, Goriparthi;Gunneswara Rao, T.D.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.313-330
    • /
    • 2017
  • Geopolymer is a sustainable concrete, replaces traditional cement concrete using alternative sustainable construction materials as binders and alkaline solution as alkaline activator. This paper presents the strength characteristics of geopolymer concrete (GPC) developed with fly ash and GGBS as binders, combined Sodium silicate ($Na_2SiO_3$) and Sodium Hydroxide (NaOH) solution as alkaline activators. The parameters considered in this research work are proportions of fly ash and GGBS (70-30 and 50-50), curing conditions (Outdoor curing and oven curing at $600^{\circ}C$ for 24 hours), two grades of concrete (GPC20 and GPC50). The mechanical properties such as compressive strength, split tensile strength and flexural strength along with durability characteristics were determined. For studying the durability characteristics of geopolymer concrete 5% $H_2SO_4$ solutions was used and the specimens were immersed up to an exposure period of 56 days. The main parameters considered in this study were Acid Mass Loss Factor (AMLF), Acid Strength Loss Factor (ASLF) and products of degradation. The results conclude that GPC with sufficient strength can be developed even under Outdoor curing using fly ash and GGBS combination i.e., without the need for any heat curing.

Estimation of Source Strength and Deposition Constant of Nitrogen Dioxide Using Compartment Model (구획모델을 이용한 주택에서 이산화질소의 발생강도 및 감소상수 동시 추정)

  • Yang Won-Ho;Son Bu-Soon;Sohn Jong-Ryeul
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.260-265
    • /
    • 2005
  • Indoor air quality might be affected by source strength of indoor pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate the source strength and deposition constant by application of multiple measurements. For the total duration of 60 days, indoor and outdoor $NO_2$ concentrations every 3 days were measured in 30 houses in Seoul, Asan and Daegu. Using a compartment model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the source strength and deposition constant were estimated. Natural ventilation was $1.80{\pm}0.42\;ACH,\;1.11{\pm}0.50\;ACH,\;0.92{\pm}0.26\;ACH$ in Seoul, Asan and Daegu, respectively. Calculated deposition constant(K) and source strength of $NO_2,$ in this study were $0.98{\pm}0.28\;hr^{1}\;and\;16.28{\pm}7.47\;ppb/h,$ respectively.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition

  • Yousefi, Amir M.;Lim, James B.P.;Uzzaman, Asraf;Lian, Ying;Clifton, G. Charles;Young, Ben
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.629-659
    • /
    • 2016
  • In cold-formed stainless steel lipped channel-sections, web openings are becoming increasingly popular. Such openings, however, result in the sections becoming more susceptible to web crippling, especially under concentrated loads applied near the web opening. This paper presents the results of a finite element parametric study into the effect of circular web openings on the web crippling strength of cold-formed stainless steel lipped channel-sections for the interior-one-flange (IOF) loading condition. This involves a bearing load applied to the top flange of a length of member, away from the end supports. The cases of web openings located centred beneath the bearing load (i.e. beneath the bearing plate delivering the load) and offset to the bearing plate, are considered. Three grades of stainless steel are considered: duplex EN1.4462, austenitic EN1.4404 and ferretic EN1.4003. In total, 2218 finite element models were analyzed. From the results of the parametric study, strength reduction factors for load bearing capacity are determined, where these reduction factors are applied to the bearing capacity calculated for a web without openings, to take account the influence of the web openings. The strength reduction factors are first compared to equations recently proposed for cold-formed carbon steel lipped channel-sections. It is shown that for the case of the duplex grade, the strength reduction factor equations for cold-formed carbon steel are conservative but only by 2%. However, for the cases of the austentic and ferritic grades, the cold-formed carbon steel equations are around 9% conservative. New strength reduction factor equations are proposed for all three stainless steel grades.