• Title/Summary/Keyword: Strength Development

Search Result 5,248, Processing Time 0.032 seconds

A Study on Strength Properties of Mortar added Nano Titanium Dioxide (나노 TIO2 첨가 모르타르의 강도 특성에 관한 연구)

  • Choi, Eung-Kyoo;Kim, Yeon-Hee;Park, Jong-Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.83-87
    • /
    • 2010
  • Functional Concrete Added Titanium Dioxide(TIO2) for photocatalysis was about a result strength Reduction by recent studies. Therefore, The purpose of the study is to review the possibility of TIO2 for using concrete admixture. As a result, Nano TIO2 for concrete admixture helps increased strength of concrete and here are some of the details. The compressive strength and flexural strength of cement mortar added same amount of Nano SF and TIO2 for admixture were development of strength a certain level each other. when Nano admixture use 10%, SF and TIO2 showed development of strength 60% and 40% each other gradually. If I use over 10% Both SF and TIO2, they showed irregular strength variations.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Study on Strength Development of Concrete for Top-Down Method (역타공법에 적용을 위한 콘크리트 강도성상 연구)

  • 정근호;이종균;김영회;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.48-53
    • /
    • 1998
  • The purpose of this study to fine the mixture of concrete for Top-Down method. As a result, In fresh concrete, slump value and slump-flow value were increased as fly ash concrete(10% ratio). When plasticizer was added 1.5% by weigh of binder in concrete, no fly ash concrete and fly ash concrete(10% ratio) all occurred segregation. And, no fly ash concrete and fly concrete(10% ratio) all showed compressive strength development close plain concrete as increasing plasticizer quantity. Especially, in case of 1.5% plasticizer of binder showed high compressive strength development.

  • PDF

Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members (강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발)

  • 홍창우;윤경구;이정호;박제선
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

A Study on the Strength Properties of Mortar Under Various Types and Contents of Accelerators for Freezing Resistance (내한촉진제의 종류 및 혼입양 변화에 따른 모르터의 강도특성에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2002
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. One of the solution methods for resolve these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerators for freezing resistance. In this study, we investigate the effect on strength development of cement mortar using accelerators for freezing resistance with the variance curing condition. As the result of this study, the mortar using accelerators for freezing resistance show that continuously strength development in curing condition of -5$^{\circ}C$. And compressive strength under the variance temperature condition was higher than constant temperature condition in same maturity.

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

Fundamental Study on the Compressive Strength of Low Cement Concrete for Typical Floor (지상층용 저시멘트 콘크리트의 압축강도 특성에 관한 기초적 연구)

  • Song, Young-Chan;Kim, Yong-Ro;Min, Choong-Siek;Song, Yong-Won;Park, Jong-Ho;Jeong, Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.46-47
    • /
    • 2013
  • In this research, it is investigated strength development by replacement ratio of mineral admixture contents, types of superplastisizer and strength improvement material contents based on industrial byproduct to expand use of low cement concrete for typical floor.

  • PDF

Case Study on Reliability Prediction of Barrier Type Pulse Separation Device using Stress-Strength Analysis (부하-강도 분석을 이용한 격막형 펄스분리장치의 내열강도에 대한 신뢰성 예측 사례연구)

  • Lee, Dong-Won;Jeong, Se-Yong;Lee, Bang-Eop;Jung, Gyoo-Dong;Park, Boo-Hee;An, Dong-Geun;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2015
  • A stress-strength analysis is used to assess the reliability of a multi-pulse rocket motor system. Main stress is found to be thermal during explosion and the distribution is obtained by simulation. The strength distribution is derived from the results of actual specimen tests. The failure rate of barrier type pulse separation device is estimated.

Properties of Strength Development Under Various Curing Condition at Early Age of Cement Mortar Using Agent for Enduring Cold Weather (내한성 혼화제를 이용한 시멘트 모르타르의 초기양생 온도변화에 따른 강도증진 특성)

  • Han, Cheon-Goo;Hong, Sang-Hee;Kim, Hyun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2001
  • In this study, the admixtures for agents for enduring cold weather used widely are collected and applied to cement mortar to analyze the strength development due to variation of curing temperature at early age. The test results show that anti-freezing admixture have some problems due to high chloride content, which may cause the corrosion of reinforcement embedded in concrete. However, the mortar applied by accelerator and another kind of agent for enduring cold weather produced by S company lead to delay of strength development in low temperature. Also, it is clarified that there are no significant problems for cement mortar in strength development due to low temperature if a suitable kind of agent enduring cold weather is used and cement mortar is cured for more than $7.5^{\circ}D.D$ at early age.

  • PDF