• 제목/요약/키워드: Strength Development

검색결과 5,286건 처리시간 0.031초

칼슘실리케이트 시멘트(CSC) 혼입 모르타르의 탄산화 양생 조건에 따른 강도발현 특성에 관한 기초적 연구 (A Basic Study on the Strength Development Characteristics of Calcium Silicate Cement(CSC) Mixed Mortar according to Carbonation Curing Conditions)

  • 김영진;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.141-142
    • /
    • 2023
  • In this study, the strength development characteristics of calcium silicate cement mixed mortar according to carbonation hardening conditions were evaluated. As a result of measuring the compressive strength, the strength increased according to the carbonation hardening time, and the strength increase rate was higher for the specimen with a CO2 concentration of 20%.

  • PDF

양생조건에 따른 알칼리활성슬래그 모르타르의 강도발현 특성 (Strength Development Properties of Alkali-Activated Slag Mortar by Curing Conditions)

  • 송진규;김병조;오명현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 춘계학술대회
    • /
    • pp.216-217
    • /
    • 2015
  • 알칼리 활성 슬래그 결합재의 초기 보양과 양생조건에 따른 강도발현 특성을 파악하고자 활성화제의 종류와 조합을 달리한 3가지 결합재를 초기 보양과 서로 다른 조건으로 양생시킨 후 강도를 측정하였다. 실험결과 3가지 결합재는 초기 보양 여부와 양생조건에 따라 다른 결과를 나타냈으며, 이는 모르타르의 경화속도와 공극수에 이온화된 활성화제의 음이온의 역할이 지배적인 것으로 판단된다.

  • PDF

성능중심설계를 위한 콘크리트 강도발현 상수에 관한 연구 (A Study on Strength Development Constant of Concrete for Performance Based Design)

  • 최연왕;정재권;박만석;오성록;이광명
    • 콘크리트학회논문집
    • /
    • 제25권2호
    • /
    • pp.225-232
    • /
    • 2013
  • 최근 건설시장의 세계적인 흐름은 방법 및 수행 절차보다는 최종 성과물의 성능을 제시하는데 초점을 맞춘 성능중심 설계기준으로 변화하고 있는 실정이다. 또한, 콘크리트 재료 및 구조물의 성능 검증을 위하여 재령효과에 따른 콘크리트 강도를 검토할 경우 적절한 모델을 사용하여야 한다. 따라서 이 논문에서는 국내 재료 특성을 반영한 콘크리트 강도발현 상수를 제안하고, 그 적합성을 평가하였다.

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.

복합재 추진기관의 확률적 구조 설계 기법 (A Probabilistic Structural Design Method of Composite Propulsion System)

  • 황태경;김형근;김성은
    • 한국추진공학회지
    • /
    • 제17권5호
    • /
    • pp.80-85
    • /
    • 2013
  • 본 논문은 평균값과 Allowable 값 기준의 구조 안전율과 구조 신뢰도와 관계 비교를 통해 복합재 추진기관의 확률적 구조 설계 방법을 설명하였다. 일반적으로 복합재 압력용기의 평균 값 기준의 구조설계는 1.5 이상의 구조 안전율과 0.999 이상의 구조 신뢰도 값이 요구된다. 요구 압력 기준의 0.999의 구조 신뢰도를 만족하기 위해서 평균 값 기준의 구조설계는 섬유 강도의 변동률에 따라 다른 구조 안전율을 부여해야한다. 그러나 이미 섬유 강도 변동률이 고려된 Allowable 값을 이용할 때는 고정된 안전율이 부여된다. 이상의 해석 결과로 볼 때 섬유 강도는 복합재 압력용기 구조 설계에 가장 중요한 설계 변수이고, 우수한 성능의 복합재 추진기관을 개발하기 위해서는 섬유 강도의 변동률이 최소화되어야 함을 알 수 있었다.

고성능 감수제가 혼입된 기경성 석회 모르타르의 탄산화 반응 및 강도발현 특성 (Carbonation Reaction and Strength Development of Air Lime Mortar with Superplasticizer)

  • 강성훈;황종국;권양희
    • 대한건축학회논문집:구조계
    • /
    • 제35권7호
    • /
    • pp.179-186
    • /
    • 2019
  • Air lime is a traditional building material of Korea. It had been used in roofs, walls, floors and masonry joints of traditional buildings until the advent of Portland cement. However, due to its low strength and durability, the lime is currently avoided as a repair or restoration material for the preservation of architectural heritage. Furthermore, due to the current practice of using hydraulic materials such as Portland cement, understanding of the material characteristics of air lime is very poor in practice. In this context, this study intended to improve the mechanical properties of the air lime mortar by reducing water contents, and also the carbonation reaction of the mortar was quantitatively evaluated to clearly understand the characteristics of this material. Accordingly, air lime mortar with a water-to-binder ratio of 0.4 was manufactured using polycarboxylate-type superplasticizer. During the 7 days of sealed curing period, the mortar did not harden at all. In other words, there was no reaction required for hardening since it could not absorb carbon dioxide from the atmosphere. However, once exposed to the air, the compressive strength of the mortar began to rapidly increase due to the carbonation reaction, and the strength increased steadily until the 28th day; after then, the strength development was significantly slowed down. On the 28th day, the mortar exhibit a compressive strength of about 5 MPa, which is equivalent to the European standard regarding strength of hydraulic lime used for preservation of architectural heritage.

초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구 (An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age)

  • 권영호;이태왕
    • 콘크리트학회논문집
    • /
    • 제29권2호
    • /
    • pp.141-148
    • /
    • 2017
  • 본 연구는 PC부재의 공장생산에 있어서 여러 가지 증기양생 조건의 변수에 따른 고강도 콘크리트의 초기 압축강도 발현성상을 실험적으로 검증하고, 최적 양생조건을 확인하기 위한 것이다. 40 MPa 이상의 고강도 콘크리트 제조에는 보통 포틀랜드 시멘트를 사용하였으며, 콘크리트의 배합조건은 물-시멘트비 3종류(W/C 25%, 35% 및 45%)를 대상으로 하였다. 본 연구의 증기양생 변수로 (1) 전치양생 시간 3종류, (2) 최고 양생온도 3종류, (3) 최고온도 유지시간 3종류, (4) 승온 및 강온양생 온도 1종류 등을 대상으로 재령별 압축강도 시험을 실시하였다. 또한, 증기양생 및 표준양생에 따른 재령별 강도발현을 비교하였다. 실험결과, (1) 전치양생은 콘크리트의 초기 응결시간 이상, (2) 최고 양생온도는 $55^{\circ}C$ 이하, (3) 최고온도 유지시간은 6시간 이하로 하는 것이 증기양생 고강도 콘크리트의 강도발현에 적합한 양생조건으로 나타났다. 또한, 재령 28일에서 증기양생과 표준양생의 압축강도 발현성상의 역전현상이 발생하였다. 따라서 이러한 양생조건으로 PC부재의 생산성 및 현장관리를 위한 기초자료로 제시하고자 한다.

옥외 노출시험에 의한 PBS 단일섬유 망사의 내구성 변화 (The Durability of Polybutylene Succinate Monofilament for Fishing Net Twines by Outdoor Exposure Test)

  • 박성욱;김성훈;임지현;최혜선
    • 수산해양교육연구
    • /
    • 제25권4호
    • /
    • pp.766-774
    • /
    • 2013
  • Biodegradable polybutylene succinate(PBS) is a kind of environmentally friendly plastics for fisheries, because it can mitigate the ghost fishing problem caused by gill-net and trap fisheries. To evaluate durability of PBS monofilament, each of different diameter 3 types of monofilaments were spun and exposed to 56 month outdoor and then their gravity, modification of surface, breaking strength, and elongation were analysed. The gravity of PBS monofilament was estimated to be approximately 1.24 when spinning ratio from 4.8 to 6.1. PBS monofilaments did not show any crack after 56 month exposed to outdoor and load-elastic elongation curve was showed sigmoid type. Decreasing ratio of elongation was appeared in the thinnest monofilament 0.2mm diameter and breaking strength was in the thickest monofilament 0.4mm diameter. Breaking strength and elongation at break were decreased rapidly after 48 month exposed to outdoor. Breaking strength reduced linearly after 48 month exposure, while no such linear relationship was found in the case of elongation at break. In results, it was investigated that the durability of PBS monofilament nets for gillnet and trap were 24, 50 month when keep to land, respectively.

Investigation of bond behavior between lightweight aggregate concrete and steel rebar using bending test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.465-472
    • /
    • 2011
  • This paper investigates bond behavior of structural lightweight concrete (SLWC) and ordinary concrete (OC) comparatively using bending test called Standard Belgium Hinged Beam Test (SBHBT). For this purpose the experiments were carried out as three series on 36 beam specimens (12 specimens of SLWC and OC with $20{\phi}$ development length, 12 specimens of SLWC with $25{\phi}$ development length). For each series bond behavior of steel rebars with 8, 10, 12, 14 mm diameters were tested. The results indicate that bond strength of SLWC is considerable lower than OC and $20{\phi}$ development length is insufficient for steel rebars with 12 mm and 14 mm diameters. Therefore development length of SLWC was extended to $25{\phi}$, even if 8 and 10 mm steel rebars provided acceptable bond strength. In this way, bond strength between SLWC and 8 and 10 mm steel rebars was developed. In addition, adequate bond behavior was achieved for 12 mm rebar but the beam in which 14 mm rebar used exceeded their bearing capacity by shear forces before yield stress. This result shows that SBHBT is more convenient for small sized steel rebars.

Association of the Explosive Strength of Knee Extensors with Skeletal Muscle Mass, Peak Torque, and Joint Angular Velocity

  • Jeongwoo Jeon
    • Physical Therapy Rehabilitation Science
    • /
    • 제13권3호
    • /
    • pp.304-314
    • /
    • 2024
  • Objective: This study aimed to investigate the association of explosive strength with muscle mass and muscle function measured using traditional methods such as peak torque (PT) and joint angular velocity (PAV). Design: Cross-sectional study Methods: Twenty-nine healthy adults (14 males and 15 females) participated in this study. Body mass index and appendicular skeletal muscle index (ASMI) were measured using bioelectrical impedance analysis. The explosive strength of the knee extensors was evaluated by measuring the rate of torque development (RTD) and rate of velocity development (RVD). RTD was analyzed by dividing it into early (0-50 ms) and late (100-200 ms) muscle contraction phases. In addition, PT and PAV were measured as traditional methods for assessing muscle function. Results: According to regression analysis, PAV accounts for 24.7% and 66.9% of the variance of RTD 0-50 (p=0.006) and RVD (p<0.001), respectively. On the other hand, ASMI (p=0.035) and isometric PT (p=0.001) explained 49.2% of the RTD 100-200. Conclusions: Early RTD is mainly predicted by PAV, which is thought to be a result of muscle fiber type. Therefore, PAV presents the possibility of an alternative method to evaluate explosive performance. Late RTD seems to be related to ASMI or isometric PT. The findings of this study are expected to contribute to musculoskeletal rehabilitation and evaluation in that they revealed factors contributing to early and late muscle contraction.