• Title/Summary/Keyword: Streamline Curvature

Search Result 60, Processing Time 0.023 seconds

Turbine Blading Performance Evaluation Using Geometry Scanning and Flowfield Prediction Tools

  • Zachos, Pavlos K.;Pappa, Maria;Kalfas, Anestis I.;Mansour, Gabriel;Tsiafis, Ioannis;Pilidis, Pericles;Ohyama, Hiroharu;Watanabe, Eiichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.89-96
    • /
    • 2008
  • This paper investigates the effect of blade deformation, caused by manufacturing inaccuracies, on the performance of a 2-stage axial steam turbine. A high fidelity 3D coordinate Measurement Machine has been employed to obtain the exact geometrical model of the blades. A Streamline Curvature solver was used to predict the overall performance of the turbine. During the manufacturing process of the casts and of the blades themselves, several types of errors can occur which lead to a different geometry from that envisaged by the designer. The main objective of this study is to investigate the effect of those errors on the performance of a 2-stage experimental axial steam turbine. A high fidelity measurement of the actual geometry of both stator and rotor blades has been carried out, using a 3D Coordinate Measurement Machine. The cross sections of the blades obtained by the measurement were compared with those produced by the design process to evaluate the change in blade inlet/exit angles. In addition, the geometrical deviations from the initial design have been subjected to a statistical study in order to locate the nature of the error. The actual(measured) model has been used as input into a Streamline Curvature solver to evaluate its performance. Finally, a comparison with the performance plots of the original geometry has been carried out. A measurable change of efficiency as well as in the total power delivered by the turbine was found. This suggests that the accumulated error caused during the manufacturing procedure plays a significant role in the overall performance of the machine by making it less efficient by more than 1%. Reverse engineering techniques are proposed to predict and alleviate these errors leading thereby to a final design of each stage with improved performance.

  • PDF

Flow Measurements and Performance Analysis using a 5-Hole Pitot Tube and a Rotating Hot-Wire Probe in an Axial Flow Fan (5공 피토관 및 회전 열선 유속계에 의한 축류 홴 내부 유동장 계측 및 평가)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1750-1757
    • /
    • 2003
  • This paper describes the flow measurements inside the blade passage of an axial flow fan by using a rotating hot-wire probe sensor from a relative flame of reference fixed to the rotor blades. The validity of fan rotor designed by a streamline curvature equation was performed by the measurement of the three-dimensional flow upstream and downstream of the fan rotor using a 5-hole pitot tube. The vortical flow structure near the rotor tip can be clearly observed by the measurements of a relative velocity and its fluctuation on quasi-orthogonal planes to a tip leakage vortex. Larger vortical flow, which results in higher blockage in the main flow, is formed according to decrease a flow rate. The vortical flow spreads out to the 30 percent span from the rotor tip at near stall condition. In the design operating condition, the tip leakage vortex is moved downstream while the center of the vortex keeps constant in the spanwise direction. Detailed characteristics of a velocity fluctuation with relation to the vortex were also analyzed.

Numerical study on the characteristics of the flow through injector orifice by multi-block computations (다중블럭계산에 의한 분사기 오리피스 유동특성 해석)

  • Kim, Yeong-Mok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.414-426
    • /
    • 1997
  • Numerical computations were conducted to characterize the three-dimensional laminar flow through an injector orifice having an inclined angle of 30 .deg.. For this study, the incompressible Navier-Stokes equations in generalized curvilinear coordinates, using a pseudocompressibility approach for continuity equation, were solved. The computations were performed using the finite difference implicit, approximately factored scheme of Beam and Warming and multi-block grids of complete continuity at block interfaces. The multi-block computations were validated for the steady state using direct comparison of multi-block solutions with equivalent single-block ones, including 2-D 180.deg. TAD and 3-D 90.deg. pipe bend. The comparisons between the numerical solutions and the flow field measurements for a tube with sudden contraction were presented in this work for solution validation. Computational results showed the nature of complex flow fields within the inclined injector orifice, including strong pressure-driven secondary flows in the cross stream induced by the effect of streamline curvature. In addition, asymmetric secondary flows were induced in the Reynolds number range above assumed laminar flow regime considered. However, turbulence calculations and grid dependency studies are needed for more accurate computations.

A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle (입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구)

  • 조수용;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, the preliminary design method is applied, and then design parameters are chosen after analyzing gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 profile, and rotor blade is designed using shape parameters. Stator is manufactured as an integral type and rotor is manufactured to be disassembled from the disc for changing blade incidence angle. The output power from the rotor is measured with various RPM and input power. Experimental results show that the maximum efficiency of turbine rotor is obtained on the design point, and the output power is proportionally decreased with the negative incidence angle even the test turbine is a reaction turbine. The efficiency of turbine rotor is decreased to 5% by $7.5^{\cire}$ negative incidence angle from the designed value.

  • PDF

Optimum Design of an Automotive A/C Duct using by CFD (CFD를 이용한 승용차 에어컨 덕트의 최적설계)

  • Kim, T.H.;Jeong, S.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.37-50
    • /
    • 1996
  • Computational fluid dynamics was used to optimize an A/C duct. Three dimensional flow analysis in an automotive A/C duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. Additionally, we studied the effect of location variation of 2nd branch on exit flow ratio and could find optimal location of 2nd branch. The design of an A/C duct was modeled and calculated to enhance the airflow distribution in each outlet using the STAR-CD computational fluid dynamics software. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the future, adoption of CFD to design an A/C duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

Design Optimization of Axial Flow Fan Using Genetic Algorithm (유전자 알고리즘을 이용한 축류 송풍기 설계최적화)

  • Lee, Sang-Hwan;Ahn, Cheol-O
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.7-13
    • /
    • 2004
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution agree well to the designer's weighting values, we proposed new multiobjective function which was the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach is effective for the case that the quality of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

An Experimental Study on Swirl Fluctuation Velocity in a Horizontal Circular Tube (수평원통관에서 선회유동의 난동속도에 관한 실험적 연구)

  • Chang Tae-Hyun;Kim Hee-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.29-37
    • /
    • 2003
  • During the past five decades or so, the characteristics of turbulent swirling flow have been studied extensively because of its great technological and scientific importance. It is well known that the swirling flow improves heat transfer in duct flow. The reason for this is due to the effect of streamline curvature associated with the tangential velocity component. Although many studies have been carried out to investigate the characteristics of the swirling flow in a circular tube. The experimental methods for measuring the velocity components are by hot-wire or LDV (Laser-Doppler-Velocimetry) measuring single point velocity so far. The present study was aimed to analyse the flow characteristics of swirling flow such as time-mean velocity vector, local velocity turbulence intensity and turbulence kinetic energy by using PIV(Particle-Image Velocimetry). The experiment was carried out for four Reynold numbers $1.0\times10^{4}$, $1.5\times10^{4}$, $2.0\times10^{4}$ and $2.5\times10^{4}$ of the measuring area.

  • PDF

A Computerized Axial Flow Fan Design System for Noise and Performance Analysis (성능 및 소음 해석 기능이 수반된 전산화된 축류 송풍기 설계 체제)

  • Chung, Dong-Kyu;Noh, Jun-Gu;Seo, Jae-Young;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.37-42
    • /
    • 2001
  • A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.

  • PDF

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Calculation of 3-Dimensional Flow Through an Impeller of Centrifugal Compressor (원심압축기 회전차 내부의 3차원 유동해석)

  • ;;Kang, S. H.;Jeon, S. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2617-2629
    • /
    • 1995
  • The flow through a centrifugal compressor rotor was calculated using the quasi-3-dimensional and fully 3-dimensional Navier-Stokes solution methods. The calculated results, obtained during the development of the computer codes for both methods are discussed. In the inviscid quasi 3-dimensional analysis, stream function formulation was used for the blade to blade (B-B) plane calculations, and the streamline curvature method was used for the meridional (H-S) plane calculations. In the viscous 3-dimensional flow analysis, a control volume method based on a general rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. The quasi-3-dimensional analysis reasonably predicts the pressure distributions and requires much less computation time in the region where viscous effects are not strong; however, it fails to predict velocity field and loss mechanism through the impeller passage. The viscous 3-dimensional flow analysis shows reasonable pressure distributions and typical jet-wake flow field through the impeller passage. Secondary flow and total pressure distributions on cross-sectional planes explain the loss mechanisms through the impeller.