• 제목/요약/키워드: Streamflow Forecasting

검색결과 65건 처리시간 0.028초

다층신경망모형에 의한 일 유출량의 예측에 관한 연구 (A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model)

  • 김성원
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.537-550
    • /
    • 2000
  • 본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용하였다. 그리고 모형의 훈련과 검증을 위하여 이용된 자료는 풍수년, 평수년, 갈수년 풍수년+평수년, 풍수년+갈수년, 평수년+갈수년 및 풍수년+평수년+갈수년으로 구분하여 구성하였다. 모형의 훈련과정에서 각 자료를 이용하여 최적 연결강도와 편차가 결정되어 졌으며, 동시에 일유출량이 계산되어졌다. 예측오차의 통계분석을 통하여 풍수년+갈수년의 자료를 제외하고는 훈련결과가 양호한 것으로 나타났다. 모형의 검증에는 모형의 훈련을 통해 산정된 CASE 1 의 SCGBP 알고리즘의 연결강도와 편차를 이용하였으며, 검증의 결과는 훈련결과처럼 만족스러운 것으로 분석되었다. 또한 본 연구에서 선정한 신경망모형과 비교검토하기 위하여 다중회귀분석모형을 적용하여 일유출량을 예측하였으며, 그 결과 신경망모형이 다소 우수한 결과를 나타내는 것으로 분석되었다. 이와 같이 신경망모형은 조직적인 접근법, 매개변수의 감소 및 모델을 개발하는데 소모되는 시간을 줄일수 있는 장점이 있다.

  • PDF

앙상블 유출 예측기법을 적용한 하천 수질 예측 (Water Quality Forecasting of the River Applying Ensemble Streamflow Prediction)

  • 안정민;류경식;류시완;이상진
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.359-366
    • /
    • 2012
  • Accurate predictions about the water quality of a river have great importance in identifying in-stream flow and water supply requirements and solving relevant environmental problems. In this study, the effect of water release from upstream dam on the downstream water quality has been investigated by applying a hydological model combined with QUAL2E to Geum River basin. The ESP (Ensemble Stream Prediction) method, which has been validated and verified by lots of researchers, was used to predict reservoir and tributary inflow. The input parameters for a combined model to predict both hydrological characteristics and water quality were identified and optimized. In order to verify the model performance, the simulated result at Gongju station, located at the downstream from Daecheong Dam, has been compared with measured data in 2008. As a result, it was found that the proposed model simulates well the values of BOD, T-N, and T-P with an acceptable reliability.

대유역의 유량예측 시스템 개발에 관한 연구 (Development of Flow Forecasting System in Large Drainage Basin)

  • 배덕효
    • 물과 미래
    • /
    • 제28권3호
    • /
    • pp.123-132
    • /
    • 1995
  • 본 연구는 대유역의 유량예측을 위한 수공학적 모형 시스템을 개발하는데 있다. 이 시스템은 각각의 부분유역에서의 기상학적, 수문학적 입력자료를 바탕으로 하천유량을 예측하는 개념적인 수문학적 강우유출모형과 각부분유역의 예측유량을 입력치로 하여 하도홍수추적을 하는 수리학적 모형으로 구성되어 있다. 실시간 해석시 새로운 관측자료로부터 모형의 상태변량을 최적화 할 수 있는 효율적인 상태변량 추정자가 사용되었다. 실시간 유량예측을 위해서 본 연구에서 개발된 모형을 적용하여 본 결과, 예측가능시간이 짧은 경우 대유역의 실시간 유량예측모형으로서 타당한 것으로 판단된다.

  • PDF

계절별 저수지 유입량의 확률예측 (Probabilistic Forecasting of Seasonal Inflow to Reservoir)

  • 강재원
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

다중선형회귀분석에 의한 계절별 저수지 유입량 예측 (Forecasting of Seasonal Inflow to Reservoir Using Multiple Linear Regression)

  • 강재원
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.953-963
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.

영산호 운영을 위한 홍수예보모형의 개발(I) -나주지점의 홍수유출 추정- (River Flow Forecasting Model for the Youngsan Estuary Reservoir Operations(I) -Estimation Runof Hydrographs at Naju Station)

  • 박창언;박승우
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.95-102
    • /
    • 1994
  • The series of the papers consist of three parts to describe the development, calibration, and applications of the flood forecasting models for the Youngsan Estuarine Dam located at the mouth of the Youngsan river. And this paper discusses the hydrologic model for inflow simulation at Naju station, which constitutes 64 percent of the drainage basin of 3521 .6km$^2$ in area. A simplified TANK model was formulated to simulate hourly runoff from rainfall And the model parameters were optirnized using historical storm data, and validated with the records. The results of this paper were summarized as follows. 1. The simplified TANK model was formulated to conceptualize the hourly rainfall-run-off relationships at a watershed with four tanks in series having five runoff outlets. The runoff from each outlet was assumed to be proportional to the storage exceeding a threshold value. And each tank was linked with a drainage hole from the upper one. 2. Fifteen storm events from four year records from 1984 to 1987 were selected for this study. They varied from 81 to 289rn'm The watershed averaged, hourly rainfall data were determined from those at fifteen raingaging stations using a Thiessen method. Some missing and unrealistic records at a few stations were estimated or replaced with the values determined using a reciprocal distance square method from abjacent ones. 3. An univariate scheme was adopted to calibrate the model parameters using historical records. Some of the calibrated parameters were statistically related to antecedent precipitation. And the model simulated the streamflow close to the observed, with the mean coefficient of determination of 0.94 for all storm events. 4. The simulated streamflow were in good agreement with the historical records for ungaged condition simulation runs. The mean coefficient of determination for the runs was 0.93, nearly the same as calibration runs. This may indicates that the model performs very well in flood forecasting situations for the watershed.

  • PDF

인공지능기법을 이용한 하천유출량 예측에 관한 연구 (Study on Streamflow Prediction Using Artificial Intelligent Technique)

  • 안승섭;신성일
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.611-618
    • /
    • 2004
  • The Neural Network Models which mathematically interpret human thought processes were applied to resolve the uncertainty of model parameters and to increase the model's output for the streamflow forecast model. In order to test and verify the flood discharge forecast model eight flood events observed at Kumho station located on the midstream of Kumho river were chosen. Six events of them were used as test data and two events for verification. In order to make an analysis the Levengerg-Marquart method was used to estimate the best parameter for the Neural Network model. The structure of the model was composed of five types of models by varying the number of hidden layers and the number of nodes of hidden layers. Moreover, a logarithmic-sigmoid varying function was used in first and second hidden layers, and a linear function was used for the output. As a result of applying Neural Networks models for the five models, the N10-6model was considered suitable when there is one hidden layer, and the Nl0-9-5model when there are two hidden layers. In addition, when all the Neural Network models were reviewed, the Nl0-9-5model, which has two hidden layers, gave the most preferable results in an actual hydro-event.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

낙동강의 실시간 홍수예측을 위한 통계적 모형구축 (The Statistical Model Construction for Real-Time Flood Forecationg in Nak-Dong River)

  • 최한규;구본수;최영수
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.51-59
    • /
    • 1998
  • To flood forecastion, until now, Storage function method, Streamflow Synthesis and Reservoir Regulation, and HEC-1 model have been analysed generally in various definite simulation. Generally, Streamflow Synthesis and Reservoir Regulation and HEC-1 model are more delicacy and more excellent model than Storage function method in physically. But the resource huge for test of models. On the contrary, Storage function method has not only a few model various and data for decision but also has poor theory background in model excessively simpled water circulation about a basin. In this reason, this study is purpose to develop a statistical flood forecasting model that can forecast with accuracy variety of water height to Nak-Dong river vibration spots in flood with accumulated water resource.

  • PDF