• Title/Summary/Keyword: Stream watershed

Search Result 854, Processing Time 0.022 seconds

Development of a Water Quality Model for Streams in an Upland Agricultural Watershed (농촌 유역 상단부의 소하천에서 수질예측모형의 개발)

  • Choe, Hye-Suk;O, Gwang-Jung;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.73-85
    • /
    • 2000
  • A water quality model was developed for small stream at a upland agricultural watershed. A control volume method was employed to digest the severe variability of stream shape, water quality and discharge at small streams. We estimated optimum reaction coefficients and model structure using a random number generation technique. The index of agreement and coefficient of efficiency were introduced for the model calibration criterion. As the result, the reliability of model parameter estimation could be improved. The applicability of model was tested by a set of sampling results at Yongduckchun in Kimhae. The variability of water quality reaction coefficient was explored through the observed data and using the developed model. model.

  • PDF

Development of a Cell-based Long-term Hydrologic Model Using Geographic Information System(I) -Cell-based Long-term Hydrologic Modeling- (지리정보시스템을 이용한 장기유출모형의 개발(I) -장기유출의 격자 모형화-)

  • 최진용;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.64-74
    • /
    • 1997
  • A CELTHYM(CEll-based Long-term HYdrologic Model), a pre-processor and a post-processor that can be integrated with geographic information system(GIS) were developed to predict the stream flow from the small agricultural watershed on the daily basis. The CELTHYM calculates the direct runoff from a grid using SCS curve number method and then sum up all of cells with respect to a sub-catchment area belonged to a stream grid and integrated to an outlet. Base flow of a watershed outlet was computed by integrating of the base flow of each stream grid that was averaged the sub-catchment deep-percolation and calculated with the release rate. Two kind of water budget equation were used to compute the water balance in a grid that was classified into not paddy field and paddy field. One of the two equation is a soil water balance equation to account the soil moisture of the upland, forest and excluding paddy field grid. The other is a paddy water balance equation for the paddy field, calculating the ponding depth, the effective rainfall, the deep percolation and the evapotranspiration.

  • PDF

An Evaluation of Aquatic Environment in the Okchon Stream-Embayment Watershed, Korea (옥천천 (만) 유역 하천과 만입부의 수환경 평가)

  • Kim, Dong-Sup;Lee, Hye-Keun;Maeng, Sung-Jin;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.181-190
    • /
    • 2003
  • An investigation was conducted on the aquatic environment of the Okchon Stream watershed six times from May to September 2002. The results of investigation revealed that variation of environmental factors were quite significant for each stream and reach, showing a significant difference between running water and stagnant water. Aquatic nutrients were relatively low in the upstream, gradually increasing as the influx of treated wastewater into the stream increased. This suggests that the point source definitely affected the nutrient content of the stream. In particular, the variations of SRP and $NH_4$ were very distinct in the watershed compared to other nutrients. Thus, it can be considered as a major factor in evaluating the effect of treated wastewater. Immediately after the influx of treated waste-water, the average content of SRP rose to 919.3 ${\mu}g$ P/l. This was a very effective level in the watershed, suggesting that the percentage of the nutrients in the water was controlled by the content of P. The constant supply of treated wastewater was found to be a critical factor in triggering the increase in chl-a in the embayment of the stream. With the proliferation of the blue-green algae, the content of chl- a ranged 234.5${\sim}$1,692.2 ${\mu}g/l$. The maximum standing crops exceeded $1.0{\times}10^6$ cells/ml in August, which was more than 200 times the level for red tide in the freshwater. This result was well reflected in other environmental factors, with 100% of AFDM/TSS reflecting the severity of water pollution by algae. Therefore, the reduction of P and N con-tents in the treated wastewater is critical in improving the aquatic environment of the stream as well as water quality management for the reservoir.

Simulation of Hydrological Behavior and Water Quality Using AnnAGNPS on Gyeong-an-Cheon Watershed (AnnAGNPS 모형을 이용한 경안천 유역의 수문$\cdot$$수질 모의)

  • Shin Hyung Jin;Kwon Hyung Joong;Kim Seong Joon
    • KCID journal
    • /
    • v.11 no.2
    • /
    • pp.95-103
    • /
    • 2004
  • The objective of this study is to simulate streamflow and water quality for Gyeongan watershed (561.1 $km^2$) using AnnAGNPS (Bingner et al., 2000). The model was calibrated and verified for three years (2000, 2002, 2003) stream discharge and w

  • PDF

Water Quality Monitoring from a Watershed with Small-Scale Livestock Production Farms (소규모 축산 농가가 산재한 유역 수질 모니터링(지역환경 \circled1))

  • 이남호;윤광식;김성준;홍성구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.543-549
    • /
    • 2000
  • Water quality was monitored from a watershed with small-scale livestock production farms. To evaluate pollution potential, land use, population, the size of livestock production of each farm, and livestock management were surveyed. Climate and stream flow data were gathered. Water samples were taken periodically for base conditions and some storm events. Pollutant loading was estimated by flow volume and concentrations of constituents.

  • PDF

Analysis of Flow-Weighted Mean Concentration(FWMC) Characteristics from Rural Watersheds (농업 및 산림유역의 강우유출수 유량가중평균농도 분석)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Stream flow and water quality were measured and analyzed with respect to flow-weighted mean concentrations (FWMCs) of 21 rainfall events from a forested watershed (Forest Research Watershed: FRW) and two mixed watersheds of agriculture and forest (YuPo-Ri Watershed: YPW and WolGog-ri Watershed: WGW) located in the middle of the North Han River basin. The monitoring of each watershed was one year and conducted between 2004 and 2006. YPW showed more intensive agricultural practices than WGW where traditional practices were common. The average of the 21 FWMCs were in the order of YPF>WGW>FRW and were significantly different from each other at the level of 0.05. It was shown that the land use with intensive agricultural practices produced and discharged more NPS pollutants than that with traditional practices and forest. Specially, SS concentrations from the mixed watersheds were significantly higher than those from FRW. Influencing factors on runoff were analyzed rainfall and watershed area. And rainfall intensity was greater impact on runoff than daily rainfall. Measured water quality indices were shown positive correlations among them in general. However, no significant correlation was shown between COD and nutrients(T-N and T-P).

Evaluation and improvement of forest watershed management projects in Korea

  • Rhee, Hakjun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.885-901
    • /
    • 2020
  • A forest watershed management project was introduced in 2004 to develop ecologically sound forest watersheds. It includes landslide prevention and erosion control, water resource management, landscape development, and forest resource management. However, it has been managed fragmentarily and inefficiently, far from the original intents. This study investigated current status, problems, and improvement measures of the project. Literature reviews were conducted on forest watershed management in Korea and other countries, and surveys were conducted on 201 erosion control experts. When introduced, the forest watershed management project was well planned and implemented as intended. It later turned to focus only on disaster prevention such as erosion control dams and stream conservation measures. The survey results showed that a majority (89% and 86%) of surveyees wanted increases in the project period and budget. They also responded that conflicts with local residents (51%) and determining project locations (32%) were the most difficult tasks when implementing the projects, and only 36% kept project records. To plan and implement the projects as intended, the following suggestions should be considered: (1) establishment of a solid legal foundation and improvement of the erosion control practices law; (2) increase in the project period (from 1 to 2 - 3 years) and budget; (3) development of a manual for project site selection and guidelines; (4) monitoring and systematic information management; and (5) development of spatial analysis tools for watershed analysis and management.

Characterization on the Variation of Streamflow at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin - (수질오염총량관리 단위유역의 유량변화 특성분석 - 금강수계를 대상으로 -)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.914-925
    • /
    • 2011
  • The variation of streamflow is regarded as one of the most influential factors on the fluctuation of water quality in the stream. The characteristics of the variation should be taken into account in the plans for the management of Total Maximum Daily Loads (TMDLs). This study analysed and characterized spatial distribution and temporal variation of streamflow at each unit watershed in Guem-river basin. For the analysis of the distribution of streamflow, the type and the extent of the distribution were investigated for the unit watershed. For the analysis of the variation, short and long term changes of streamflow were examined. The result showed that most of the distributions were not log-normalized and the extent of variation tends to be greater at the unit watershed placed on the tributaries in the basin. A kind of margin could be granted to the unit watershed involving high variations so as to establish the water quality goal and load allotment more reasonably and effectively in view of whole waterbody.

Simulation of 10-day Irrigation Water Quality Using SWAT-QUALKO2 Linkage Model (SWAT-QUALKO2 연계 모형을 이용한 관개기 순별 관개수질 모의)

  • Kim, Ji Hye;Jeong, Han Seok;Kang, Moon Seong;Song, In Hong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.53-63
    • /
    • 2012
  • The objectives of this study were to develop a linked watershed-waterbody modeling system and to assess the impacts of indirect wastewater reuse on irrigation water quality. The Osan stream watershed within Gyeonggi-do of South Korea was selected for this study. The linked modeling system was composed of the SWAT (Soil and water assessment tool) and QUALKO2 models. The SWAT model was calibrated and validated using the stream discharge and water quality data from 2010 to 2011. Runoff and non-point source pollutants from each subbasin and stream discharge from 1980 to 2009 were simulated by the SWAT model and applied to the QUALKO2 model. The QUALKO2 model was calibrated and validated under the conditions of low water and normal discharges, respectively. Finally, The 10-day irrigation water quality from April to September was simulated. The statistical measures of coefficient of determination ($R^2$), reliability index (RI), and efficiency index (EI) were used to evaluate the system performance. The $R^2$, RI and EI values ranged from 0.5 to 1.0, 1.03 to 1.92, and -35.03 to 0.95, respectively. The 10-day irrigation water quality showed the concentrations of BOD and coliform exceeded the water quality guidelines for wastewater reuse. The linked modeling system can be a useful tool to estimate non-point source pollutant loads in watershed and to control the water quality of effluent from a wastewater treatment plant and irrigation water in the downstream waterbody.

Application of Regression Analysis Model to TOC Concentration Estimation - Osu Stream Watershed - (회귀분석에 의한 TOC 농도 추정 - 오수천 유역을 대상으로 -)

  • Park, Jinhwan;Moon, Myungjin;Han, Sungwook;Lee, Hyungjin;Jung, Soojung;Hwang, Kyungsup;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.187-196
    • /
    • 2014
  • The objective of this study is to evaluate and analyze Osu stream watershed water environment system. The data were collected from January 2009 to December 2011 including water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and discharge. The data were used for principle component analysis and factor analysis. The results are as followes. The primary factors obtained from both the principal component analysis and the factor analysis were BOD, COD, TOC, SS and T-P. Once principal component analysis and factor analysis have been performed with the collected data and then the results will be applied to both simple regression model and multiple regression model. The regression model was developed into case 1 using concentrations of water quality parameters and case 2 using delivery loads. The value of the coefficient of determination on case 1 fell between 0.629 and 0.866; this was lower than case 2 value which fell between 0.946 and 0.998. Therefore, case 2 model would be a reliable choice.The coefficient of determination between the estimated figure using data which was developed to the regression model in 2012 and the actual measurement value was over 0.6, overall. It can be safely deduced that the correlation value between the two findings was high. The same model can be applied to get TOC concentrations in future.