• Title/Summary/Keyword: Stream water-environmental assessment

Search Result 280, Processing Time 0.019 seconds

A Study on Redesign of Spatial Data Structure of Korean Reach File for Improving Adaptability (하천망분석도(KRF)의 활용성 증대를 위한 공간데이터 구조 개선에 관한 연구)

  • Song, Hyunoh;Lee, Hyuk;Kang, Taegu;Kim, Kyunghyun;Lee, Jaekwan;Rhew, Doughee;Jung, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.511-519
    • /
    • 2016
  • National Institute of Environmental Research (NIER) has developed the Korean Reach File (KRF) for scientific and systematic analysis of variables related to water quality, pollutant sources and aquatic ecosystems in consideration of steam reach networks. The KRF provides a new framework for data production, storage, management and analysis for water related variables in relation to spatial characteristics, connections, and topologies of stream reaches. However, the current version of KRF (ver.2) has limited applicability because its nodes include not only the stream points based on topological characteristics but also those based on water quality monitoring stations, which may undermine its generality. In this study, a new version of KRF (ver.3) was designed and established to overcome the weak point of version 2. The version 3 is a generalization of the old KRF graphic data and it integrates the attribute data while separating it from the graphic data to minimize additional work that is needed for data association and search. We tested the KRF (ver.3) on actual cases and convenience and adaptability for each application was verified. Further research should focus on developing a database link model and real-world applications that are targeted to process event data.

Index of Organic Matter in Stream and Lake (하천·호소의 유기물 지표 평가)

  • Yu, Soon Ju;Hwang, Jong Yeon;Yoon, Young Sam;Cheon, Se Uk;Han, Eui Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.81-92
    • /
    • 1999
  • This study discussed the appropriateness of organic matter indexes such as biochemical oxygen demand(BOD) and chemical oxygen demand with potassium permanganate($COD_{Mn}$) in water quality environmental standard of streams and lakes and the applicability of the items to water quality environmental standard to add or substitute COD with potassium dichromate ($COD_{Cr}$) and total organic carbon(TOC) being used as index of organic matter. And indexes of organic matter content and organic carbon concentration were distinguished between dissolved and particulate component in water sample to estimate their effect on pollutants loading in lake and stream. The ratio of $COD_{Cr}$/BOD was 5.1 under BOD concentration 3mg/L in river water quality environmental standard II, and 2.67 above it. This ratio was diminished to 2.04 when BOD concentration was more than 8mg/L, in river quality environmental standard IV. Also the ratio of $COD_{Mn}$/BOD showed 2.16 under 3mg/L(BOD), and 1.1 above it. This ratio is also diminished to 0.84 over 8mg/L(BOD). Accordingly, we should apply this ratio depending on the concentration level to add and change organic matter index of water quality environmental standard newly. The ratio $COD_{Cr}/COD_{Mn}$ both in lake and stream shows 2.37(r=0.986, p<0.001). But the ratios showed range of 2.34~2.50, which is no much difference of this ratio according to $COD_{Mn}$ concentration.

  • PDF

Assessment of changes on water quality and aquatic ecosystem health in Han river basin by additional dam release of stream maintenance flow (하천유지유량 추가 댐방류에 따른 한강유역의 수질 및 수생태계 건강성 변화 평가)

  • Woo, So Young;Kim, Seong Joon;Hwang, Sun Jin;Jung, Chung Gil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.777-789
    • /
    • 2019
  • The purpose of this study is to evaluate changes in water quality and aquatic ecosystem health by additional dam release of stream maintenance flow from multipurpose dams in Han river basin ($34,148km^2$) using SWAT (Soil and Water Assessment Tool). The period of additional release was spring (April to June) and autumn (August to October) to evaluate the changes with the data of aquatic ecosystem health survey. The amount of additional release was set proportional to the present dam release, and the maximum release amount was controlled not to exceed the officially notified stream maintenance flow from dam. The 10 percent to 50 percent additional releases showed that the stream water quality (T-N, $NH_4$, T-P, and $PO_4-P$) concentrations except $NO_3-N$ decreased in spring while increased in autumn period. Using the stream water quality results and applying with Random Forest algorithm, the grade of aquatic ecosystem health index (FAI, TDI, and BMI) was improved for both periods especially in the downstream of basin. This study showed that the additional release of stream maintenance flow was more effective in spring than autumn period for the improvement of water quality and aquatic ecosystem.

A Method of River Environmental Impact Assessment using LCA (LCA를 적용한 하천환경영향평가 방법)

  • Kim, Sung-Joon;Jin, Ming-Ji;Jeon, Yong-Tae;Shin, Seon-Mi;Choe, Yong-Seung;Won, Chan-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.93-104
    • /
    • 2012
  • In this research LCA methodology was adapted and analyzed in quantifying estimation of estuarine environment. The analysed objects of estuarine environment were construction methods, facility, and input material into water, and estuarine ecosystem. In this research the function of LCA of estuarine environment was river with the view of controling water, utilizing water, and hydrophilic function. According to the result of research, environmental damage indicator of facility was decreased 346 Pt from 453 Pt at pre-maintenance to 107 pt at post-maintenance. Among raw and subsidiary materials, remicon, stone-netting bag, and pebbles were showing heavy environmental load in the order. Evironmental impact of input material into water system was analyzed from 1,827 Pt environmental load before construction to 1,080 Pt of post-maintenance, and damage indicator was improved at 747 Pt. Water quality was improved from 1,827 Pt (before construction) to 1,080 Pt(after construction), and ecosystem was improved after maintenance. Environmental indicator in ecosystem was analyzed 427 Pt(before construction) to 348 Pt(after construction), and damage indicator of Sumnjingang riverine system was improved as much as 79 Pt. In the conclusion, estuarine environmental monitoring through LCA in the area of facility, input material into water and ecosystem showed that close-to-nature stream was 1,172 Pt better than artificial stream in environmental aspects.

The Assessment of Water Pollution Accident on Dam Watershed using GIS (GIS에 의한 댐 유역 수질오염사고 평가)

  • Myeong, Gwang Hyeun;Jeong, Jong Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.489-496
    • /
    • 2011
  • The water pollution such as oil spill from stream and river because of car accidents have been frequent cases in the watershed of Dam. However we don't have any simulation methods about flow modeling on the watershed and stream tree. In this study aims to analyze water pollution accidents area on impact range for ANDONG-Dam. The focused watershed and the risk range of path analysis model was designed by GIS database. The frequency of transportation accidents which may occur from road accidents in the level of quantitative and qualitative analysis to map flow analysis using ArcHydro Model and Open Geospatial Consortium(OGC) API. and the path way from the accident point to the reservoir stayed on the path was simulated. The area of risk accessment index was displayed with cell and grid of dam area.

Management for Improvement in Water Quality and Change of Fish Assemblage in Urban Dong Stream with Input of Seawater (해수 투입에 따른 동천 주변 환경 개선 평가를 위한 어류상 변화 및 관리 방안)

  • Kwak, Seok-Nam;Kim, Dong-Myung;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.253-261
    • /
    • 2015
  • The chemical water quality and fish assemblage of Dong Stream to assessment of environmental improvement after discharge seawater were investigated from July to December 2013. BOD and DO were significantly different between before and after discharge seawater, while pH and SS did not significant. A total of 11 fish species, 218 individuals and 10,525.1g were collected. Dominant fish species were Mugil cephalus, Konosirus punctatus, Acanthogobius flavimanus and Leiognathus nuchalis which account for 77.5% of total individuals collected, and they were estuarian species. Peak number of species and individuals, and biomass occurred in September, whereas diversity index were highest in November. The water ecosystem of Dong Stream have been changed estuarian environment. As a result of stream assessment on water quality and ecosystem, water quality have been improved as 'III' grade. These results suggested that stream restoration policies such as drain pipes maintenance, management of pollution sources and riverbed dredging to improve environment and recover habitate of Dong Stream were need for set up and establishment of regular monitoring system.

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

Assessment of Ecological Streamflow for Maintaining Good Ecological Water Environment (수생태 환경유지를 위한 하천생태유량 산정)

  • Jung, Chung-Gil;Lee, Ji-Wan;Ahn, So-Ra;Hwang, Soon-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.1-12
    • /
    • 2016
  • The objective of this study is to analyze the relationship between stream water quality of TN (total nitrogen), TP (total phosphorus), and BOD (Biochemical Oxygen Demand) and TDI (Trophic Diatom Index) score determined by physico-chemical factors, biomass, and standing crops of epilithic diatoms, and to estimate the required amount of ecological streamflow for good water environment of Trophic Diatom. For the main stream of Chungju dam watershed of South Korea, total 100 field data of 3 years (2008~2010) measured in May and September were used to derive the relationship between water quality and TDI. Trophic Diatom had high correlation (0.55 determination coefficient) with TN. Using the relationship, the required streamflow was evaluated by using the Soil Water Assessment Tool (SWAT) for good Trophic Diatom water environment through T-N water quality maintenance. The SWAT simulated 8 years (2003~2010) stream discharges and T-N water quality along the main stream. From present garde C (score range: 30.0~45.0) to grade A (score above 60.0) of TDI, the May needs additional streamflow of $63.1m^3/sec$ (+36.7 % comparing with the present streamflow of $172.0m^3/sec$) at the watershed outlet.

Assessment for Water Quality of the Osan Stream using Epilithic Diatom Assemblage Index to Organic Pollution(DAIpo) (부착규조 군집과 유기오탁지수를 이용한 오산천의 수질평가)

  • Kim Baik-Ho;Choi Hwan-Seok;Kim Mi-Yeon;Yoo Hyung-Bin
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.45-50
    • /
    • 2004
  • To investigate the epilithic diatom community and water quality of the Osan stream, water samples were collected from the eight stations from April to September 2003. Sampling was two times before and after heavy rain. Total 52 diatom were identified and divided into 12 saproxenosus taxa, 6 saprophilous taxa and 34 indifferent taxa, respectively. The DAIpo values higher after heavy rain than before that. According to tolerance degree to the organic water pollution, all sampling stations ranged from $\alpha$-oligosaprobic to $\alpha$-mesosaprobic. Thus, the result indicates that the water quality of Osan stream is gradually improved by heavy rain.

Assessment of the Water Quality of Jungnang Stream by Flow Conditions Using Load Duration Curve (부하지속곡선을 이용한 중랑천의 유량 조건별 수질특성 평가)

  • Choi, Kyung-Wan;Shin, Kyung-Yong;Lee, Hyung-Jin;Jun, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.438-447
    • /
    • 2012
  • Objective: The objective of this study was to suggest a method through which load duration curve was used to assess the achievement of water quality targets in accordance with the criteria for pollutant load depending on flow rate variation. Methods: The stage-discharge curve and flow duration curve of Jungnang Stream were deduced. Using water quality targets and measurement of the stream, the flow duration curve was also drawn. Based on these, the feasibility of achievement of water quality targets in respect to flow rate was assessed. Results: In terms of the load duration curve of the stream, it was observed that excess of criteria for concentrations of $BOD_5$, $COD_{Mn}$ and SS frequently occurred. On the other hand, when the flow rate was low, the concentrations of T-N and T-P exceeded the criteria. Conclusions: Through the load duration curve, the overall water quality of Jungnang Stream was understood. When the flow rate is high, management of point source of $BOD_5$, $COD_{Mn}$ and SS is needed to achieve water quality targets for Jungnang Stream. On the other hand, when the flow rate is low, the management of non-point source T-N and T-P is necessary to attain the water quality goal.