• Title/Summary/Keyword: Stream water-environmental assessment

Search Result 280, Processing Time 0.018 seconds

Studies on the Integrated Stream Naturalness Assessment Based on Abiotic and Biotic Factors (비생물 및 생물 요인에 기초한 통합적 하천자연도 평가기법에 관한 연구)

  • Pyo, Jae-Hun;Mun, Hyeong-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Integrated stream naturalness based on abiotic and biotic factors were developed. Abiotic factors considered in this study were types of land use in the riparian area, river bank and high water bed streamside, revetment, bed substrate and artificial construction of streamside. Biotic factors included types of vegetation, assemblages of fish, macroinvertebrate, bird and mammal(Otter) in streams. The presence/absence of legal species and biological assessment index were also weighted as important parameters in this study. Scoring criteria selected for each matrix was five rating system; 1=poor, 2=moderate, 3=fair, 4=good, 5=excellent. Numerical ratings for the matrix were then summed. This resulted in a minimum score of 13 if all matrix at a site were poor, and a maximum score of 65 if all matrix were excellent. Five grade system from poor(I) to excellent condition(V) was employed. To verify its validity in natural environment, the evaluation system was applied to the Gapchun stream which is a test bed selected. Our result showed that stream naturalness of each reach was clearly distinguished by biotic and abiotic characteristics. Determination of correlation coefficient between abiotic and biotic factors was also high ($R^2=0.96$, p<0.05). In conclusion, assessment for stream naturalness reflecting abiotic and biotic factors was useful method representing stream integrated.

Assessment of Water Quality Based on Ecological Factors in Anyang River (안양천에서의 생태학적 수질오염도 평가)

  • Lee, Yang-Kyoo;Cho, Won Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.39-50
    • /
    • 2006
  • In this study, the water quality investigated during 2002s to 2004s for Anyang river and its affluent that was based on biological and chemical methods as well as ecological index of each streams. The improving of water quality and the multiplicity of specious in the most streams except for Anyang, which was due to the improving of water quality and water resource. The seasonal dry states are completely disappeared, but water quality of Anyang main stream was classified as fifth grades water with BIP 8.51~10.00 and BOD 8.16~14.4mg/l in Anyang stream overall. And alpha-mesosaprobic in upper, mid parts and polysaprobic in down parts of Anyang main stream are appeared according to Saprobien system, respectively. The water supply of treated sewage is appeared that upgrading effects of water quality in Anyang main stream and affluents of Anyang city area, but the practical effects of "Saving Anyang River" could not gained because the water quality of other branches in upstream parts than upstream measuring point of Anyang main stream, Wanggok stream Sanbon stream in Gunpo and Eeiwang cities, was not improved.

The Estimation of Contribution Ratio for Sub Stream in Nam River Basin (남강유역 지류·지천별 영향도 평가)

  • Lee, Jae-Woon;Kwon, Heon-Gak;Kwak, In-Soo;Youn, Jong-Soo;Cheon, Se-Uk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.745-755
    • /
    • 2012
  • The relations between tributaries and mainstream were identified with the water qualities measurements in the field. Parameters of water qualities were BOD, T-N, T-P and measurements were performed by 4 events of rainfalls for 2011. The precipitation data influenced on pollutants loads. Pollutants loads were fluctuations with the seasonal variation. Gajoacheon contributed in 18.39% of BOD, 23.79% of T-N, 15.23% of T-P and Nabulcheon contributed in 13.54% of BOD, 13.05% of T-N and 13.66% of T-P in the region from Nam River_C to Nam River_D. In case of the region from Nam River_C to Nam River_D, Yongacheon river inflowed to main stream as 23.65% of BOD, 20.74% of T-N, and 15.05% of T-P.

The Phytoplankton community of Namdae-stream, Yeongok-stream and of Sacheon-stream in Gangwon-do (강원도 남대천, 연곡천과 사천천의 식물플랑크톤 군집)

  • Kim, Yong-Jin;Lee, Ok-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.281-297
    • /
    • 2011
  • The specie composition, stranding crops and the dominant species of phytoplankton were studied in three streams, Namdae-stream, Yeongok-stream and Sacheon-stream from May 2008 to February 2009. The water qualities of the three streams which run into estuary were also examined using phytoplankton indicators. As the result, the phytoplankton appeared 94 taxa in Namdae-stream, 79 taxa in Yeongok-stream and 73 taxa in Sacheon-stream, diatoms appeared the most in phytoplankton. Genus Navicula and Cymbella in diatoms appeared to be over 10 taxa in each stream, N. cryptocephala, N. cryptotenella and N. gregaria, the pollution tolerance taxa, appeared more frequent in the downstream. Due to the separation of each substrate by the rapid water velocity in the upstream, Achnanthes minutissima, a known periphyton, was dominant in upstream site at Namdae and Yeongok-stream. Some construction areas and sites of downstream of Namdae-stream, Yeongok-stream and Sacheon-stream were shown to be polluted because pollution tolerance taxa, such as Cyclotella meneghiniana, Nitzschia palea and Oscillatoria limnetica, were dominant. The total of 20 taxa phytoplankton indicators were found, composed of 16 taxa of Water pollution algae including Oscillatoria limosa, 2 taxa of Clean water algae Meridion circulare and Staurastrum puntulatum, 1 taxa of Toxic algae Microcystis aeruginosa and 1 taxa of Taste and odor algae Fragilaria construens. Water pollution indicators were appeared frequently in polluted sites of biological water quality(DAIpo, TDI) and of sites containing high trophic state index(TSI). Therefore, using the phytoplankton indicators can assess water quality through relation of biological water quality and trophic state index.

Methodology for the Identification of Impaired Waters Using LDC for the Management of Total Maximum Daily Loads (오염부하지속곡선(LDC)을 이용한 수질오염총량관리 단위유역 목표수질 달성여부 평가방법)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.693-703
    • /
    • 2012
  • Load Duration Curve(LDC) is a useful tool for analyzing water quality characteristics under various stream flow conditions. This study investigated the methods to identify impaired waterbodies in the assessment of water quality goal attainment by using LDC for the management of Total Maximum Daily Loads (TMDLs). Three methods were proposed. Non-typical regime exclusion method is a method to exclude water quality observations in the non-typical extreme flow conditions in order to minimize the influence of non-ordinary water quality. Flow regime weighted average method is a method to calculate weighted mean water quality instead of arithmetic mean in order to consider water characteristics properly on stream flow regime in addition to the effect of Non-typical regime exclusion method. Load exceeded interval comparison method is a method to compare the intervals between the attained and non-attained load duration periods on the LDC. The assessment of water quality goal attainment can be performed more reasonably and precisely considering water quality variations on stream flow conditions by applying these proposed methods.

An Analysis of Ecological Habitat Characteristics in the Nonsan Stream and Yanghwa Stream (논산천과 양화천 수계 내 하천 생물서식처의 특성 분석)

  • Ahn, Tae-Woong;Ahn, Hong-Kyu;Chun, Seung-Hoon;Choi, Jun-Kil;Ha, Sung-Ryong;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.127-140
    • /
    • 2010
  • This study investigates the relation between the location of a habitat and the ecological connections according to the habitat type in the riparian zone at the Nonsan Stream and Yanghwa Stream. Stream habitat is classified into nine types for the aquatic insects and fish. For vegetation and birds, habitat is classified into two types of medium-scale streams, including both physical and chemical streams are analyzed accordingly. Nowadays, The fundamental goal of the river environment restoration enterprise is the rehabilitation or the restoration of the characteristic the river scenic or environment. For instance, The Channel habitats which has physical nature environment such as flat, speedy rapids, or closed-channel wetland, pool are constructed by artificial, Consequently, make them autogenesis smoothy eco-environment. However, the river environment are controlled not only physical environment, but it also need reasonable the quality of the water to compose smoothly. Finally, understanding what influence are effecting on physical habitat environment which are made by natural factors to water quality are very important factor for the river environment restoration enterprise Therefore, In this research, we are targeting to a basin to investigate the environment of the physical channel habitat and evaluate the changing of the water quality. This results will be a important characteristic that can judge the physical habitat and reciprocality connected to the water quality or adequacy of restoration technology. Therefore in this study, as a step to quantify functions and values of habitats and definite factors to perform habitat, we selected a representative stream of sand-stream, gravel-stream to classify habitat characteristics and quantified the physical, chemical, biological characteristics.

Assessment of Water Quality in the Miho Stream Using Multivariate Statistics (다변량 통계기법을 이용한 미호천 본류 수질특성 평가)

  • Yoon, Hyeyoung;Kim, Jeehyun;Chae, Minhee;Cho, Yoonhae;Cheon, Seuk
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.4
    • /
    • pp.373-386
    • /
    • 2019
  • In The study, is to investigate the spatial characteristics of the Miho stream, which is the main tributary of the Geum River system, and to identify the main factors influencing the water quality using water quality analysis and multivariate analysis. The survey subjects were selected as 7 main sites in the Miho stream water system, From 2012 to 2017, 16 items including weather temperature and weather data were used for multivariate analysis. As a result of the water quality analysis, the average concentration of BOD and COD for 6 years was 3grade (normal) compared with the water quality environmental standard (river) of conditions. The concentrations of nitrogen and phosphorus were highest at th upstream site, then decreased and then increased again by the hydrogeological and geomorphological effect. Cluster analysis of spatial and water quality characteristics, it was evaluated as three clusters and the pollution sources is the greatest impact. As a result of principal component analysis and factor analysis on each cluster and mainstream, three to four major components were extracted. Main stream and the Cluster 1, Cluster 3 first principal factor included nitrogen and seasonal factors,first factor of Cluster 2 included nitrogen and water temperature. Nitrogen is the principal factor which affects water quality in Miho stream.

Estimation of Nonpoint Pollutant Loads in the Hwanggujichoen Basin using SWMM (SWMM을 이용한 황구지천유역의 비점원오염부하량 평가)

  • Cho, Jae-Heon;Cho, Nam-Heung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2003
  • Water pollution of Hwanggujicheon stream is severe because urban area of Suwon City is included in the basin. A countermeasure for water quality prevention of the stream is necessary. In this study, nonpoint pollutant load of BOD, SS, TN and TP are estimated using SWMM. The result indicates that BOD, SS, TN and TP loads during 3 months from July to September are 67.0%, 60.8%, 54.7% and 74.5% of the annual total load, respectively. We can see that most of nonpoint pollutant loads are generated in the rainy season. Annual nonpoint pollutant loads of BOD, SS, TN and TP in the Hwanggujicheon stream are 342 ton, 1,500 ton, 480 ton and 12.6 ton, respectively.

A Study about the Influence of Pollutant Load on Water Quality in a Small Stream Watershed (소하천의 오염부하량이 수질에 미치는 영향에 관한 연구)

  • Lee, Sang-Hoon;Cho, Wook-Sang
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • An intensive watershed survey including water quality measurement of 6 times was carried out in order to find out the relationship between pollutant load and water quality in a small stream watershed where livestock wastewater is the main source of water pollution. The findings from the survey are as follows. 1) The number of livestock showed large disagreement among county office, myon, and insite survey. It is vital to check the data at the beginning of watershed survey. 2) The fluctuation of streamflow and water quality was so large depending on the day of measurement that it is essential to set up continuous telemetering system to get reliable data about delivery ratio of pollutants. 3) It was helpful for setting the priority of investigation to check water quality and quantity at several points along the stream after dividing the watershed into 5 drainage areas. 4) To control the livestock wastewater, especially in case of cows, it is necessary to have roof system and prevent overland flow from the ground. In case of pig farms, it is recommended to have public treatment system instead of private treatment system. The exact emission load of livestock wastewater was difficult to estimate, and requires more study.

  • PDF

Estimating the Pollution Delivery Coefficient with Consideration of Characteristics Watershed Form and Pollution Load Washoff (유역형상과 오염부하배출 특성을 고려한 유달계수 산정)

  • Ha, Sung-Ryong;Park, Jung-Ha;Bae, Myung-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.79-87
    • /
    • 2007
  • The performance of a stream water quality analysis model depends upon many factors attributed to the geological characteristics of a watershed as well as the distribution behaviors of pollutant itself on a surface of watershed. Because the model run has to import the pollution load from the watershed as a boundary condition along an interface between a stream water body and a watershed, it has been used to introduce a pollution delivery coefficient to behalf of the boundary condition of load importation. Although a nonlinear regression model (NRM) was developed to cope with the limitation of a conventional empirical way, this an up-to-date study has also a limitation that it can't be applied where the pollution load washed off (assumed at a source) is less than that delivered (observed) in a stream. The objective of this study is to identify what causes the limitation of NRM and to suggest how we can purify the process to evaluate a pollution delivery coefficient using many field observed cases. As a major result, it was found what causes the pollution load delivered to becomes bigger than that assumed at the source. In addition, the pollution load discharged to a stream water body from a specific watershed was calculated more accurately.