• Title/Summary/Keyword: Stream flow

Search Result 2,014, Processing Time 0.025 seconds

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

ESTIMATION OF DAM DISCHARGE FOR THE DOWN STREAM WATER QUALITY

  • Ha, Jin-Kyu;Hong, Il-Pyo
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.51-59
    • /
    • 2002
  • In recent years the human impact on the environment becomes increasing lift threatening, calls for the better management of resources. In field of water quality of river flow, the best way to conserve water quality is specific efforts to control the pollutant loadings and treat the loadings in the basin to reduce the discharge of pollutant loadings to river. But in general the water quality influenced by the dam discharge. Especially in dry season, it is more dominant way to improve the water quality which contaminated with the pollutant loadings from the basin. The dam discharge amounts of the 2 dams in the Keum River that maintain the down stream water quality were estimated for the year of 1999, 2001, 2006, 2011, in case of irrigation and non-irrigation seasons. The pollutant loadings for the basin are estimated with the planning of treatment plants construction schedule for every sub-basins. The river flow rates were considered low flow as 2.33 year low flow and 10 year low flow. The QUAL2E model was used as a tool of simulation.

  • PDF

Analysis of Steam Characteristics in Chun-cheon Lake by Building a Artificial Marsh (춘천호내 인공습지 조성에 따른 흐름특성 분석)

  • Choi, Han-Kuy;Park, Jae-Guk;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.215-219
    • /
    • 2009
  • Based on the data interpretation on an artificial marsh built in Chun-cheon Lake, the study analyzed flow characteristics and found that flow was unstable due to sediment of natural river but the effect of artificial marsh was similar with that of river improvement works. Flow velocity in the section of artificial marsh was found to be 1m/sec. Therefore flow velocity was stable, which could contribute to improving water quality. A flow velocity as well as stream vector was improved.

  • PDF

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

A Numerical Analysis of River-bed Variation in Alluvial Stream (충적하천(沖積河川)의 하상변동(河床變動)에 관한 수치해석(數値解析))

  • Park, Jung Eng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1984
  • This paper is to exhibit the numerical analysis of sediment transport in the slowly varing flow and the sediment transport relation between the steady and the unsteady flow in the alluvial stream. The gradually varied flow of alluvial stream and the sediment transport are very complicated physical phenomen. Therefore the mathematical modeling is needed to be established. Linear implicit means of modified indirect method are applied to sediment transport by numerical analysis instead of the conception of steady flow in order to decrease errors. Further more, this study has purpose on reasonable prediction of the river-bed variation by way of this numerical method.

  • PDF

Current Status of Refractory Dissolved Organic Carbon in the Nakdong River Basin (낙동강유역 난분해성 용존 유기탄소 배출 현황 분석)

  • Lee, Jeonghoon;Kim, Jungsun;Lee, Jae Kwan;Kang, Limseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.538-550
    • /
    • 2012
  • This study suggests a general methodology which is designed for assessing RDOC behavior at the catchment scale by coupling properly a series of steam flow and water quality simulation models and actual monitoring data set. The modified TANK model in which a river routing function is incorporated to the conventional one is applied to simulate the long-term daily stream flow data, and the simulated stream flow data is combined with the 7-parameter log-linear model coupled to the minimum variance unbiased estimator to simulate the long-term daily water quality (BOD, COD and TOC) loads. Finally, the regression analysis between the usually monitored water quality data (BOD, COD and TOC) and RDOC is combined with the simulated water quality data to manifest the spatio-temporal variability of RDOC flux behavior at the Korean TMDL catchment scale.

Discrete-vortex Simulation of Turbulent Separation Bubble Excited by Acoustic Perturbatioons (음향교란을 받는 난류박리기포의 이산와류 수치해석)

  • 임재욱;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.775-786
    • /
    • 1992
  • Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream when the oncoming free stream contains a pulsating component. The discrete-vortex method is applied to simulate this flow situations because this approach is effective to represent the unsteady motions of turbulent shear layer and the effect of viscosity near the solid surface. The two key external paramenters in the free stream, i.e., the amplitude of pulsation, A, and the frequency parameter St[=fH/ $U_{1}$], are dealt with in the present numerical computations, A particular frequency gives a minimum reattachment which is related to the drag reduction and the most effective frequency is dependent on the most amplified shedding frequency. The turbulent flow structure is scrutinized. A comparison between the unperturbed flow and the perturbed at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale structure is associated with the shedding frequency and the flow instabilities.

A Proposal of Unit Hydrograph Using Statistical Analysis in Oedo Stream, Jeju (통계적 기법을 적용한 외도천의 단위유량도 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.393-401
    • /
    • 2015
  • Rainfall-runoff model of Jeju Oedo Stream was used to compute the optimal unit hydrograph by HEC-HMS model that reflecting on watershed characteristics. Each rainfall event was comparatively analyzed with the actual flow measurement using Clark, Snyder and SCS synthetic methods for derived unit hydrograph. Subsequently, the null hypothesis was established as p-value for peak flow and peak time of each unit hydrograph by one-way ANOVA(Analysis of variance) was larger than significance level of 0.05. There was no significant difference in peak flow and peak time between different methods of unit hydrograph. As a result of comparing error rate with actual flow measurement data, Clark synthetic unit graph best reflected in Oedo Stream as compared to other methods, and error rate of Clark unit hydrograph was 0.02~1.93% and error rate at peak time was 0~2.74%.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF

Application of a Decision Support System for Total Maximum Daily Loads (오염총량관리를 위한 의사결정 지원시스템 적용)

  • Lee, Hye-Young;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.151-156
    • /
    • 2004
  • A decision support system, Watershed Analysis Risk Management Framework(WARMF), was applied to the Kyungan Stream watershed, a tributary of Lake Paldang, for calculation of total maximum daily loads(TMDL). The WARMF system was developed by Systech Engineering, USA, and has been successfully used in several watersheds, for TMDL studies. The study area was divided into 14 sub-basins, based on digital elevation model(DEM). The integrated watershed and stream model of WARMF was validated by flow and BOD data measured during the year of 1999. There were reasonable agreements between model results and field data, both in water flow and BOD. The validated Kyungan WARMF was extensively utilized to study the quantitative relationship between waste loads and receiving water quality. Based on TMDL guideline at Paldang Lake and Kyungan Stream, the water quality criterion were set to be 3.0mg/L, 3.5mg/L, and 4.0mg/L at the watershed outlet. The allowable waste loads of BOD, both from point and non-point sources, were determined at each water quality criterion. From this study, it was concluded that the WARMF provided several advantages over the conventional application of watershed and stream models for TMDL study, such as time variable simulations, multiple possible soutions, and reduction loads for goal water quality, etc.