• Title/Summary/Keyword: Stream Slope

Search Result 349, Processing Time 0.027 seconds

Appication of A Single Linear Reservoir Model for Flood Runoff Computation of Small Watersheds (소유역량의 홍수유출계산을 위한 단일선형 저수지 모형의 적용)

  • 김재형;윤용남
    • Water for future
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 1986
  • The purpose of this study was to investigate the applicability of Single Linear Reservoir (SLR) model for runoff computations of small river basins in Korea. In the existing watershed flood routing methods the storage coefficient(K), which is the dominant parameter in the model, has been proposed to be computed in terms of the wqtershed characteristics. However, in the prsent study, the rainfall characteristics in addition to the watershed characteristics were taken into account in the multiple regression analysis for more accurate estimation of storage coefficient. The parameters finally adopted for the regressions were the drainge are, mean stream slope of the watershed, and the duration and total dffective amount of rainfalls. To verify the applicability of SLR model the computed results by SLR model with K determined by the regression equation were compared with the observed gydrographs, and also with those by other runoff computation methods; namely, the Clark method, nakayasu's synthetic unit hydrograph method and Nash model. The results showed that the present zSLR model gave the best results among these methods in the case of small river basins, but for the whatersheds with significant draingage area the Clark method gave the best results. However, it was speculated that the SLR model could also be accurately applied for flood compuatation in large wagersheds provided that the regression for storage coefficients were made with the actual data obtained in the large river basins.

  • PDF

A Study on the Byung-Su Jo's House in Yongyu Island (인천 용유도의 조병수가옥에 대한 연구)

  • Han, Jong-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.332-337
    • /
    • 2017
  • This study investigates the site and architectural space of Byung-Su Jo's traditional house on Yongyu Island in Incheon. The house is located on a peaceful, warm site that is well protected by surrounding mountains, such as Hyunmubong to the rear, Jwacheongyong to the left, Wubackho to the right, and Ansan in front. The house was designed with an open layout with a sarangchae and anchae. There is a spring on the left side of the sarangchae, and a stream auspiciously flows from the west to the east in front of the sarangmadang. The house generally faces south, but to avoid pressure by the height of Ansan in the south direction, it is slightly turned to the east. There is a wide, rectangular pond that covers the pungsu weak point of the empty open view between the right and left mountains. The sarangchae space is composed of front 6 Gan and side 3 Gan. The anchae space is also composed of front 6 Gan and side 3 Gan,and it has a typical L-shaped anchae layout for the middle region of Korea. There is no shrine in the backyard, where yongmag is descending from hyunmubong, and a jangdokdae is installed to the west direction of the anbang due to narrow and slope backyard space.

The Coastal Geomorphic System of Sagye, Jeju (제주 사계해안의 지형시스템)

  • Seo, Jong-Cheol;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2007
  • In Sagye coast of Andeok-myeon, southwestern Jeju, shore platform of noncohesive Hamori Formation, marine terrace deposit of round gravels, coastal dune composed of shell sand and volcanic sand, and back lake are linked closely with each other. In this paper, the formation process of Sagye coastal geomorphic system analysed by using OSL dating method is as follows: Firstly, Hamori Formation is a horizontal stratum filed up of tuff reworked by submarine volcanic eruption during 3$\sim$7.6 ka BP. Hollow at the boundary between Hamori Formation' flat and Kwangheak Basalt's gentle slope become a back lake when block is appeared over the sea level by uplift. Secondly, while Hamori Formation was laid below sea level, gravels which had been broken and abraded at southwestern rocky coast composed of Kwangheak basalt or been transported through the small stream from adjacent hillslope were deposited in rapid flow environment. Thirdly, deposition of round gravels was ceased by earth uplift, and shore platform was constructed by abrasion process of energy of swash moving forward. As altitude of shore platform is equal to high tidal level of spring tide, compared it with present high tidal level of study area, earth is uplifted about 105m since shore platform was formed. Fourthly, much sandy sediments transported from offshore bottom covered shore platforms and marine terrace deposits. Lighter sediments among sandy sediments was blown to back, formed secondary sand dune since about 500 year.

  • PDF

Availability test of eco-levee construction for presevation of bangudae petroglyphs (생태제방을 이용한 반구대암각화 보존방안 연구)

  • Lee, Seung-Oh;Chegal, Sun-Dong;Cho, Hong-Je
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.931-939
    • /
    • 2016
  • Bangudae Petroglopys of the national treasure No. 285 located in elevation of 53 m to 57 m have been damaged by repetition of submergence and exposure due to the Sayeon-dam of EL.60 m constructed in down stream. In this study, as a preservation plan of the petroglyphs from the contact with water, the construction of eco-levee was suggested and its effect was investigated in the views of hydraulic engineering. It was designed to be located aside of 80 m from Bangudae Petroglyphs with the length of 440 m in streamwise direction, and it was need to construct a new channel maintaining the original hydraulic capacity and conveyance. Hydraulic characteristics such as water surface elevations and velocities near Bangudae Petroglyphs were measured after the eco-levee was installed in the hydraulic model with the scale of 1:50. It showed that there were not much changes of water surface elevations and velocities between sayeon-dam spillway EL. 60 m (Suggestion 1) and EL. 54 m (Suggestion 2). It was concluded the eco-levee could be made of natural materials like soil, pebble, gravel in terms of allowable velocity and shear stresses. The slope of water surface at Suggestion 2 was steeper, and velocities near Bangudae Petroglyphs were also faster than Suggestion 1. As the vorties occured at the left side in Suggestion 2, more detailed study is required.

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan (백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Kim, Sunkyeong;Chang, Cheolwoo;Cho, Eunil;Yang, Innsook;Kim, Yunjeong;Kim, Sanghyun;Lee, Kilha;Kim, Seongwook;Macedonio, Giovanni
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.615-625
    • /
    • 2013
  • Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there were unrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan's Plinian eruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse of eruption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by small eruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows are caused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rim of the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruption column occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows will be deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.

Effect of Forest Land Use on Soil Runoff in Small Watershed (산지소유역에서 임지이용이 토사유출에 미치는 영향)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.220-225
    • /
    • 2012
  • This study was carried out to clarify the impact of land use (Castanea crenata, Pinus densiflora and Plantation Land) on soil runoff in small watershed. The soil runoff showed in order of plantation land, Castanea stand and Pinus stand. The resulting models in linear equations of three stands were able to account for 70%, 60% and 60% respectively. The relationship between soil runoff and forest environmental factors was a positive correlation at 1% level with slope, forest type, soil hardness, watershed area, stream length and at 5% level with accumulative rainfall, but was negative correlation at 1% level with coverage. The main factors that affected soil runoff in small watershed showed in order of coverage, accumulative rainfall and stand type. In the stepwise regression between soil runoff and forest environmental factors, the estimation equation is as follow; Y = 31.250 - 1.140(Coverage) + 0.413(Accumulative rainfall) + 20.829(Forest type). The results indicates that dangerous areas of landslide and soil runoff by land use could be applied to the mitigation measures such as afforestation, erosion check dam and revetment for erosion control and water quality management in small watershed.

Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea (FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • This research was aimed to analyze landslide susceptibility and compare the prediction accuracy using ensemble frequency ratio (FR) and logistic regression at the Inje area, Korea. The landslide locations were identified with the before and after aerial photographs of landslide occurrence that were randomly selected for training (70%) and validation (30%). The total twelve landslide-related factors were elevation, slope, aspect, distance to drainage, topographic wetness index, stream power index, soil texture, soil sickness, timber age, timber diameter, timber density, and timber type. The spatial relationship between landslide occurrence and landslide-related factors was analyzed using FR and ensemble model. The produced LSI maps were validated and compared using relative operating characteristics (ROC) curve. The prediction accuracy of produced ensemble LSI map was about 2% higher than FR LSI map. The LSI map produced in this research could be used to establish land use planning and mitigate the damages caused by disaster.

Edge Vegetation Structure in Chiak Mountain National Park (치악산 국립공원의 주연부 식생구조)

  • 오구균;권태호;조일웅
    • Korean Journal of Environment and Ecology
    • /
    • v.2 no.1
    • /
    • pp.19-36
    • /
    • 1988
  • To investigate edge vegetation structure and edge species in Chiak Mountain National Park, field survey was executed from July to September, 1988. Canonpy drip-line type, cantilevered type and advancing type of edge vegetation were observed on site. The relative importance values of major species in each crown layer were changed along distance from edge to forest interior differently by aspect and present tree layer vegetation. Especially light-oriented edge species as codominant species were observed in Pinus densiflora forest interior at south slope and moisture - oriented species as codominant species were observed with light-oriented species in north edge beside torrential stream. No. of species and individuals by crown layer, species diversities and dissimilarities were decreased according to the distance from edge to forest interior, and edge depth was estimated as 15-20m. Dominant species of edge in shrub and ground layer were different by altitude and topographic locations; valley, ridge, summit and edge species at summit were not observed at other area. Floristic similarities between edge vegetations at different environments were affected by altitude, aspect and topographic location. Frequency classes of edge species were different by aspect, altitude and topographic location. Weigela subscssilis showed high frequency class in all environment conditions and Quercus mongolica, Lindera obtusiloba, Symplocos chinensis for, pilosa, weigela subscssilis, Fraxinus rhynchophylla, Actinidia arguta, Rubus crategifolius. Pinus densiflora, Aralia elata etc, were observed as edge species at all environmental conditions, respectively.

  • PDF

Current status of population size and habitat selection of the long-tailed goral(Naemorhedus caudatus) in Seoraksan National Park (설악산국립공원 멸종위기 산양(Naemorhedus caudatus) 개체군 크기와 서식지 이용 현황)

  • Cho, Chea-Un;Kim, Kyu-Cheol;Kwon, Gu-Hui;Kim, Ki-Yoon;Lee, Bae-Keun;Song, Bung-Cheol;Par, Jong-Gil
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.710-717
    • /
    • 2015
  • This study was conducted investigate population size and habitat use for the conservation and management of the endangered long-tailed goral in the Seoraksan National Park using feces and camera trap during 2010 to 2014 (track survey, camera trap). As a result of feces tracking and camera trap, its population size was estimated as 160 (camera trap)~251 (feces) individuals in the Seoraksan National Park. The goral prefer $35^{\circ}{\sim}60^{\circ}$ (slope), 600~700m (elevation), NE (aspect), 0~50m (distance to stream), 300~600m (distance to road) and bread-leaved forest (forest type) according to field tracking of fecal. Based on field camera trap, we estimated the age classes of goral populations and activity of gorals during day-time (07-18 time, 56.5%) and night-time (18-07 time, 43.5%). Such analyses of population size and habitat use of the goral could be applied as important fundamental data for conservation of gorals and management of their habitats.

Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations (국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교)

  • Kim, Gyoo-Bum;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.86-97
    • /
    • 2007
  • The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.