• Title/Summary/Keyword: Stream Slope

Search Result 349, Processing Time 0.027 seconds

Research on Characteristics of Vegetation Subsequent to Crossing Structure of the Urban Streams - Centering on the Cases of Dorimcheon, Banghakcheon, Seongnaecheon and Yangjaecheon in Seoul - (도시하천의 횡단구조에 따른 식생분포특성 연구 -서울시 도림천, 방학천, 성내천, 양재천을 사례로-)

  • Bae, Jung-Hee;Lee, Kyong-Jae;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.268-279
    • /
    • 2008
  • This study is aimed at typifying the crossing structure and inquiring into the characteristics of vegetation distribution by type targeting Dorimcheon(stream), Banghakcheon(stream), Seongnaecheon(stream) and some sections of Yangjaecheon(stream) in Seoul through the establishment of basic data for restoring vegetation in urban stream. This research classified the crossing structure into 56 slope types and 31 vertical types in combination with the three items, such as bank slope(vertical style, slope style) of bank, absence or presence of waterside, and revetment structure. This research derived nine slope types including SB1 (revetment of low water level-revetment with vegetation, and revetment of high water level-nature riverside) including SG5(revetment of low water-concrete, and revetment of high water level-riprap work), and three vertical types, such as VH4(bank revetment-wet masonry), and VH7(bank revetment - concrete )from the target survey areas. Among these, both revetment of low water level and high water level were found to be distributed on the longest section as the type of SG7 and VG7 structured in concrete. As a result of inquiry and analysis of micro topography structure and vegetation structure of eight major types, this research could find out the influence of crossing structure on plant vegetation according to the characteristic by typified item, but there appeared no distinct characteristic of vegetation distribution by crossing structure.

Development of GIS-based Method for Estimating and Representing Stream Slopes Along the River Network (GIS 기반 하천경사 산정 및 하천망에 따른 표출 방식 개발)

  • You, Ho-Jun;Kim, Dong-Su;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.725-738
    • /
    • 2012
  • Recently, a variety of GIS-based tools enabling to generate topographic parameters for hydrologic and hydraulic researches have been developed. However, most of GIS-based tools are usually insufficient to estimate and visualize river channel slopes especially along the river network, which can be possibly utilized for many hydraulic equations such as Manning's formula. Many existing GIS-based tools have simply averaged cell-based slopes for the other advanced level of hydrologic units as likely as the mean watershed slope, thus that the river channel slope from the simple approach resulted in the inaccurate channel slope particularly for the mountain region where the slope varies significantly along the downstream direction. The paper aims to provide several more advanced GIS-based methodologies to assess the river channel slopes along the given river network. The developed algorithms were integrated with a newly developed tool named RiverSlope, which adapted theoretical formulas of river hydraulics to calculate channel slopes. For the study area, Han stream in the Jeju island was selected, where the channel slopes have a tendency to rapidly change the upstream near the Halla mountain and sustain the mild slope adjacent to watershed outlet heading for the ocean. The paper compared the simple slope method from the Arc Hydro, with other more complicated methods. The results are discussed to decide better approaches based on the given conditions.

Landform and Drainage Analysis in Geoje-Do Using GIS (GIS를 이용한 거제도 지형 및 하계 분석)

  • Kim, Woo-Kwan;Lim, Yong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.19-35
    • /
    • 1997
  • The purpose of this study is to find out the characteristics of landform in Geoje-Do using GIS and DTED data. The characteristics of landform in Geoje-Do are as follows; First, the height-range of Geoje-Do is $0{\sim}580m$, and the average elevation of it is 124m. Volcanic and granite region is mainly appeared at high elevation-region. But, we can't find out outstanding difference of elevation, according to its geology. The second. the slope-range of Geoje-Do is $0{\sim}52$ degree, and the average slope of it is 17.6 degree. The slope of volcanic and granite area is more steeper than any other region. But the results of analysis of the geology in Geojo-Do, don't show outstanding difference of the slope. The third, the area-rate of the aspect of Geoje-Do is almost same in all direction. And the area-rate of south-west direction is the highest. According to the geology of Geoje-Do, granite is distributed the most widely, and the area of volcanic and granite occupy 60% of entire island's area. According to analysis of influence of geology with elevation, geology has little relationship with elevation. According to analysis of geology and drainage network, streams are inclined to be developed well in Alluvium area. Drainage network is well developed throughout the entire island, except southeast area. The highest order of stream is 4 in 1:25,000 topographic map. The density of stream in Geoje-Do is very high, such as 1.6. The bifurcation-ratio of stream is also higher than 4 in all order. The length-ratio of stream is ranged from 1.24 to 3.25. According to the relationship between order and elevation. order is the greater, elevation is the lower. According to the relationship between order and slope, order is the greater, slope is the gentler. In this study, we use DTED Data, and compare it with topographic map data. According to the comparison, there is a little difference between DTED data and topographic map data. Therefore, to use DTED data in landform analysis, it is required coordinate matching process. This process is very important, and take very long time. Thus, if you use DTED in landform analysis, some processes are required. DTED data can be taken very easily, but its using is not simple. Because coordinate adjust is very hard work.

  • PDF

The Stockpiling and Spreading of Topsoil for the Ecological Restoration of Floodplains and the Levee Slope of a Stream (하천 고수부와 제방 비탈면의 생태적 복원을 위한 표토의 집토와 부설)

  • Han, Seung-Wan;Kim, Hyoung-Joon;Chae, Byoung-Koo;Kim, Jeong-Goo
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • Topsoil including numerous soil seedbanks has been known to be a valuable material for ecological restoration. There is a lack of specific study for its utilization in the field of stream restoration. This study conducted a revaluation of the value of topsoil as a material for stream restoration. Furthermore, an ecological technique using topsoil was applied in an improvement project of a stream environment at the Hwanggujicheon Stream in Korea. Stockpiling and spreading topsoil was specifically applied to the revegetation of a low slope revetment and a high flow plain. The result of this application showed that topsoil played an integral role in eco-friendly restoration in terms of ecological, flood control, economic, and constructional aspects. In conclusion, this study's findings suggest that topsoil is a suitable candidate material for stream restoration.

Analysis of Road-to-Stream Linkage Characteristics in a Mountain Catchment using the Discriminant Analysis (판별분석을 이용한 산악지역 도로-하천 연결 특성 분석)

  • Park, Sang-Hyoung;Park, Changyeol;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • This study analyzed the linkage characteristics between road runoff and the nearest streams in mountain regions using a discriminant analysis. The road-to-stream linkage is an important characteristic to evaluate whether the contaminant on road surface is transported directly into the nearby channel system. This study evaluated a total of 51 drainage outlets of mountain roads near the Soyanggang Dam. The linkage between road and stream, slope and width of road, and other information necessary for the discriminant analysis have been collected by in situ investigation and by analyzing the Digital Elevation Model. Finally, as independent variables in the discriminant analysis, the contributing road representing the road characteristics (similar to the runoff from the road drainage outlet) and the distance and slope of the connecting channel between road and nearest stream were selected. Among these three, the distance was found to have the highest discriminant power, the contributing road the lowest. Using the discriminant function derived, 40 out of 51 cases (78.4%) were correctly discriminated and the remaining 11 cases (21.6%) were wrongly discriminated. Reasons of wrongly discriminated cases were mainly due to change in drainage outlet direction, excessive runoff, change in road-to-stream path, etc. This result also indicates that the road-to-stream linkage can be introduced or prohibited by exactly the same way.

Improvement of Rating-curve by HEC-RAS (HEC-RAS를 이용한 수위-유량곡선의 개선방안)

  • Lee, Yeong Hwa;Lee, Chang Su;Park, Gi Beom
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.759-765
    • /
    • 2004
  • HEC-RAS model is used for estimation of rating-curve of Musung in Wi stream. Discharge is computed from stage estimated by HEC-RAS model, is compared with the discharge of water surface slope method. The relative deviation of observed and computed discharge is 5.37%, and shows as a good results. A rating-curve by HEC-RAS model shows better results than by water surface slope method.

An Experimental Study on the Depth Variation of Water Flow on Steep Open Channel with Constant Width (一定幅 急傾斜 開水路上을 流動하는 물의 깊이 變化에 관한 實驗的 硏究)

  • 박이동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.86-95
    • /
    • 1986
  • A study on film water flow on steep open channel has been seldom found up to date. Therefore, this paper dealed with the depth variation of film thickness of water (city supply normal water) flowing on steep open channel. For this purpose, Experimental apparatus (made of a normal glass with 160cm of length and 15cm of width) was made and the depths of the water flowing on the channel were measured experimentally, changing the channel slope angle from 30 to 80 degree (5 steps) and the flow rate from 0.25 to 10CPM (11 steps). The results obtained, some characteristics of the film flow on the channel are as follows. (1) When thin film water flowed on steep open channel, the depths of flow tended to increase after decreasing and was kept nearly constant in its downstream in case of laminar and transitional flow region. The turining point of the depths of flow from decrease to increase tended to move downward with the increase of Reynolds number. In turbulent flow region, the depths of flow showed reapid decrease in its upper stream, gradual decrease in its midstream and were kept nearly constant in its downstream. (2) While the differences between the depths of flow along the channel slope got small in its upper stream and got large in its downstream in case of laminar flow region, they got very large in its upper stream and were kept nearly constant in its downstream in case of transitional and turbulent flow region. And the move flow rate increases, the more the differences between the depths of flow along the channel slope got large in its upper stream.

Slope Stability Analysis of New Gabion Wall System with Vegetation Base Materials for Stream Bank Stability and Rehabilitation (계안 복원을 위한 식생기반재 돌망태 옹벽의 계안 안정효과 분석)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.130-137
    • /
    • 2012
  • This study has conducted to develop new gabion wall systems with vegetation base materials for stream bank stability and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Normally gabion wall systems resist the lateral earth pressures or stream power by their own weight. Therefore, fill material must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones are basically specified, and about 50-mm rubbles are also used. Test application of new gabion wall system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the analysis of hydraulic stability of new gabion wall system, gabion wall system has highest threshold shear stress when the gabion wall covered by vegetation. New gabion wall system is highly resistant to sliding and overturning because safety coefficients exceed 1.5. As a result of term of slope stability analysis of new gabion wall system by Bishop and Fellenius methods, stability of stream bank was highly increased after the construction of gabion wall. Therefore, new gabion wall system is effective to stabilize unstable stream bank.

Experimental Study of Changes in Channel Characteristics at Stream Confluences (하천합류점의 하도특성치 변화에 관한 실험적 연구)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.421-434
    • /
    • 1997
  • Flume experiments are conducted to describe channel adjustments at stream confluences and to examine some factors to which changes in channel characteristics are subject. There are different factors controlling channel size and shape; shereas the fomer is primarily controlled by water discharge alone, the latter including channel slope is influenced by sediment load as well as water discharge. The morphometric adjustments of confluent tributaries can be consequently classified into three types based upon changes in sediment concentration which are associated with the relative increasing rates of water discharge and sediment load at these sites. Flow is accelerated at stream confluences due to the convergence of confluent flows, causing an sharp increase in velocity. It restrains an increase in channel capacity, and furthers a decrease in channel slope, of a receiving stream. As a result, effects of slight increases in sediment concentration hardly appear on changes in channel characterisitics at stream confluences.

  • PDF

Dissolved Oxygen Trend in Sapgyo Stream Watershed (삽교천유역의 용존산소 추세)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.667-681
    • /
    • 2013
  • In this study, monthly and seasonal dissolved oxygen trends of 19 water quality measurement stations in Sapgyo stream watershed were analyzed using monthly dissolved oxygen (DO) data measured for 16 years (1995~2010). Mann-Kendall trend test and Sen's slope estimator were carried out for trend analysis. Furthermore, Sapgyo stream watershed was divided into four different sections (Sapgyo stream, Muhan stream, Gykgyo stream, and Sapgyo lake) and chi-square test of homogeneity for DO trend was carried out for four different sections. The study results indicated that most of water quality measurement stations showed increasing or non-significant trend of DO on a monthly and seasonal basis. The chi-square test of homogeneity for each water quality measurement station showed the statistical homogeneity in seasonal DO trend; however, the test results showed the statistical non-homogeneity in monthly DO trend for the stations located in the reservoir. Overall, the dissolved oxygen trend in each water quality measurement station showed different patterns depending on the location of each station and season.