A complex event processing system, becoming useful in real life domains, efficiently processes stream of continuous events like sensor data from IoT systems. However, those systems do not work well on some types of queries yet, so that programmers should be careful about that. For instance, they do not sufficiently provide detailed guide to choose efficient queries among the almost same meaning queries. In this paper, we propose an query preprocessing tool for event stream processing systems, which helps programmers by giving them the hints to improve performance whenever their queries fall in any possible bad formats in the performance sense. We expect that our proposed module would be a big help to increases productivity of writing programs where debugging, testing, and performance tuning are not straightforward.
The sensor network is a wireless network of the sensor nodes which sensing, computation and communication ability. Each sensor nodes create the data items by sensor nodes above one. Like this feature, the sensor network is similar to distributed data base system. The sensor node of the sensor network is restricted from the power and the memory resources is the biggest weak point and is becoming the important research object. In this paper, We try to see efficient sensor data stream management method and efficient query processing method under the restricted sensor network environment.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.5B
/
pp.794-800
/
2010
It is necessary to accurate and efficient management for measured digital data from various sensors in digital marine vessel. It is not efficient that sensor network process input stream data of mass storage stored in database the same time. In this paper, We propose to improve the processing performance of multidimensional stream data continuous incoming from multiple sensor. We propose that we arrange some sensors (temperature, humidity, lighting, voice) and process query based on sliding window for efficient input stream and found multiple query plan to Mjoin method and we reduce stored data using SVM algorithm. We automatically delete that it isn't necessary to the data from the database and we used to ship diagnosis system for available data. As a result, we obtained to efficient result about 18.3% reduction rate of database using 35,912 data sets.
Streaming data processing is an area of interest with much research under way. There has been increasing attention on the demands for efficient processing of streaming data produced in the application areas such as monitoring and sensor network. We have developed a continuous query processing system for streaming data and evaluated its performance in this paper. XML, the standard for data exchange on the web, is used as the model for the streaming data and the XQuery appended with a time interval is adopted as the query language for expressing con-tinuous queries. In the proposed system, the result is produced through background processing and materialized for reute in subsequent query processing. Through a detailed set of performance experiments, we shoed the effectiveness of the proposed system.
Journal of Korea Spatial Information System Society
/
v.11
no.2
/
pp.79-88
/
2009
The volume of memory to store real-time data stream is varied dynamically. Continuous queries processing the data stream must manage the storage volume dynamically. In previous research, according to current volume of data a general memory manager which allocates and releases memory by a page unit is researched.However, the method frequently executes page allocation and release to store data stream. Moreover, particularly delayed queries can monopolize many of pages because the method directly allocates pages when a query has not enough memory. Focusing on the problems in memory management systems, this research proposes a memory management method which reduces the frequency of allocation and release and uniformly distributes pages for queries. The method can reduce the frequency of allocation and release through allocation based on utilization ratio of pages in each query and prevent memory monopoly through memory allocation which considers query delay.
A data stream which is a massive unbounded sequence of data elements continuously generated at a rapid rate. Many recent research activities for emerging applications often need to deal with the data stream. Such applications can be web click monitoring, sensor data processing, network traffic analysis. telephone records and multi-media data. For this. data processing over a data stream are not performed on the stored data but performed the newly updated data with pre-registered queries, and then return a result immediately or periodically. Recently, many studies are focused on dealing with a data stream more than a stored data set. Especially. there are many researches to optimize continuous queries in order to perform them efficiently. This paper proposes a query optimization algorithm to manage continuous query which has multiple join operators(Multi-way join) over data streams. It is called by an Extended Greedy query optimization based on a greedy algorithm. It defines a join cost by a required operation to compute a join and an operation to process a result and then stores all information for computing join cost and join cost in the statistics catalog. To overcome a weak point of greedy algorithm which has poor performance, the algorithm selects the set of operators with a small lay, instead of operator with the smallest cost. The set is influenced the accuracy and execution time of the algorithm and can be controlled adaptively by two user-defined values. Experiment results illustrate the performance of the EGA algorithm in various stream environments.
Journal of Korea Spatial Information System Society
/
v.11
no.2
/
pp.89-98
/
2009
As data stream is entered into system continuously and the memory space is limited, the data exceeding the memory size cannot be processed. In order to solve the problem, load shedding methods which drop a part of data to prevent exceeding the storage space have been researched. Generally, a traditional load shedding method uses random sampling with optimized rate according to data deviation. The method samples data not to distinguish those used in spatial query because the method uses only a random sampling with optimized rate according to data deviation. Therefore, the accuracy of query was reduced in u-GIS environment including spatial query. In this paper, we researched a new load shedding method improving accuracy of the query in u-GIS environment which runs spatial query and aspatial query simultaneously. The method uses a new sampling method that samples data having low probability used in query. Therefore proposed method improves spatial query accuracy and query processing speed as applying spatial filtering operation to sampling operator.
XML data are widely used for data representation and exchange on the Web and the data type is an continuous stream in ubiquitous environment. Therefore there are some mining researches related to the extracting of frequent structures and the efficient query processing of XML stream data. In this paper, we propose a mining method to extract frequent structures of XML stream data in recent window based on the sliding window. XML stream data are modeled as a tree set, called XFP_tree and we quickly extract the frequent structures over recent XML data in the XFP_tree.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.3
/
pp.2158-2164
/
2015
In u-GIS environments, various load shedding techniques have been researched in order to balance loads caused by input spatial data streams. However, typical load shedding methods on aspatial data lack regard for characteristics of spatial data, also previous load shedding approaches on spatial, which still lack regard for spatial data density or dynamic input data stream, give rise to troubles on spatial query processing performance and accuracy. Therefore, dynamic load shedding scheme over spatial data stream is proposed through stored spatial data deviation and load ratio of input data stream in order to improve spatial continuous query accuracy and performance in u-GIS environment. In proposed scheme, input data which are a big probability related to spatial continuous query may be a strong chance to be dropped relatively.
Park, Dae-Hyun;Kim, Young-Jun;Lee, Jeong-Hoom;Chong, Il-Young
Proceedings of the IEEK Conference
/
2007.07a
/
pp.133-134
/
2007
The effective data processing mechanism in the sensor network means data stream model and real-time query processing model for real-time processing of stream data. This mechanism can improve satisfaction of users and reduce delay rate of data processing. In this paper, we explain the problem which is occurred when users need to search certain information among information of stream data and describe reduction model of delay rate according to data transmission.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.