• 제목/요약/키워드: Stream Flood

검색결과 508건 처리시간 0.025초

Flood Characteristics at Nakdong Estuary with 1 Dimensional Unsteady Model (1차원 부정류 모형을 활용한 낙동강 하류의 홍수 특성)

  • Lee, Sang-jin;Shin, Hyun-Ho;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Environmental Science International
    • /
    • 제19권2호
    • /
    • pp.149-155
    • /
    • 2010
  • Rainfalls would increase the discharges or stages of tributary channels in natural watersheds, which in turn augment the magnitude of main stream stages. Rising of water surface elevation in main streams can affect and damage the human activities because of the possibilities of the breakdown or overflow of the embankment. Therefore it is necessary to establish the structural or non-structural alternatives for the sake of prevention or treatment of those disasters. Many mathematical models to analyze the flood flows in natural watercourses have been proposed as the non-structural alternatives so far. In this study one of the such models, FLDWAV developed by NWS(National weather Service), is applied to the downstream reach of Nakdong river. Model calibration is performed on various Manning's roughness coefficients at the gauging stations. The simulation results are compared well with hydrological estimations of flood discharges considering the effects of multipurpose dams upstream of control points.

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Flood Risk for Power Plant using the Hydraulic Model and Adaptation Strategy

  • Nguyen, Thanh Tuu;Kim, Seungdo;Van, Pham Dang Tri;Lim, Jeejae;Yoo, Beomsik;Kim, Hyeonkyeong
    • Journal of Climate Change Research
    • /
    • 제8권4호
    • /
    • pp.287-295
    • /
    • 2017
  • This paper provides a mathematical approach for estimating flood risks due to the effects of climate change by developing a one dimensional (1D) hydraulic model for the mountainous river reaches located close to the Yeongwol thermal power plant. Input data for the model, including topographical data and river discharges measured every 10 minutes from July $1^{st}$ to September $30^{th}$, 2013, were imported to a 1D hydraulic model. Climate change scenarios were estimated by referencing the climate change adaptation strategies of the government and historical information about the extreme flood event in 2006. The down stream boundary was determined as the friction slope, which is 0.001. The roughness coefficient of the main channels was determined to be 0.036. The results show the effectiveness of the riverbed widening strategy through the six flooding scenarios to reduce flood depth and flow velocity that impact on the power plant. In addition, the impact of upper Namhan River flow is more significant than Dong River.

A Study on the Planning of Riparian Forest in Flood Plain, Korea (국내 홍수터의 하안수림대 조성을 위한 연구)

  • Kim, Hyea-Ju;Shin, Beom-Kyun;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • 제25권2호
    • /
    • pp.189-210
    • /
    • 2011
  • As a part of improving the effect of stream restoration, the study selected 90 domestic natural streams that are not damaged and researched their riparian vegetations. Among them, the results of streams, whose naturalized ratio were more than 5 % and valley type flood plains were not developed, were excluded. By using the results of final 49 streams, plant communities and companion species that commonly appeared in high frequency, depending on stream type, were drawn. The result revealed that Quercus mongolica community, Hemiptelea davidii community and Salix koreensis community were representative in the mid-northern district (latitude: N $37{\sim}37.9^{\circ}$) with Salix koreensis community in the central district (latitude: N $36{\sim}36.9^{\circ}$) and Quercus serrata community in the southern district (latitude: $34{\sim}35.9^{\circ}$). For the stream type depending on altitude, Quercus serrata community and Phragmites japonica community were representative in the altitude of 200~500 m and there was no stream, in which flood plain is developed naturally, in the altitude of more than 500 m. In addition, the study drew representative communities depending on width of stretches of water at mean water level indicating the size of stream. Quercus serrata community was major vegetation at sites which are less than 20 m wide and Salix koreensis community was common at sites which are more than 20 m and less than 100 m wide of stretches of water at mean water level. Meanwhile the major vegetations at sites which are more than 100 m wide were Salix koreensis community, Morus bombycis community and Salix nipponica community. The study selected the kind of tree for planning riparian forest in flood plain by stream type on the basis of the result and suggested tree planting pattern that can be used in actual work by referring to the result of hydraulic review.

A Study of the Relationship between In-stream Vegetation and Sediment Transport by a Hydraulic Model Experiment (실험수로에서 식물군락에 의한 유사거동 양상에 관한 실험적 고찰)

  • Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • 제35권6호
    • /
    • pp.753-762
    • /
    • 2002
  • In-stream vegetation is an essential element of a stream channel. Vegetation plays an important role in flood control and the natural environment in stream channels. This research investigates the relationship between in-stream vegetation and stream changes. This study investigates the distribution characteristic of vegetation in some rivers of Korea. Although there are many physical factors that cause changes to streams, this research verified that in-stream vegetation caused sediment deposition. A hydraulic model experiment was conducted. Tests were conducted in a simulated gravel bed stream (bed slope 1/200) with Phragmites japonica. The average diameter of the bed load used was 0.3 mm and 27 kg were uniformly supplied for 1 hour under same hydraulic conditions. The deposition and scouring as well as the change of flow differed according to the density and arrangement of the Phragmites japonica. In-stream vegetation and stream channel change are closely related because deposition and scouring affects the distribution of vegetation.

Reliability evaluations of time of concentration using artificial neural network model -focusing on Oncheoncheon basin- (인공신경망 모형을 이용한 도달시간의 신뢰성 평가 -온천천 유역을 대상으로-)

  • Yoon, Euihyeok;Park, Jongbin;Lee, Jaehyuk;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • 제51권1호
    • /
    • pp.71-80
    • /
    • 2018
  • For the stream management, time of concentration is one of the important factors. In particular, as the requirement about various application of the stream increased, accuracy assessment of concentration time in the stream as waterfront area is extremely important for securing evacuation at the flood. the past studies for the assessment of concentration time, however, were only performed on the single hydrological event in the complex basin of natural streams. The development of a assessment methods for the concentration time on the complex hydrological event in a single watershed of urban streams is insufficient. Therefore, we estimated the concentration time using the rainfall- runoff data for the past 10 years (2006~2015) for the Oncheon stream, the representative stream of the Busan, where frequent flood were taken place by heavy rains, in addition, reviewed the reliability using artificial neural network method based on Matlab. We classified a total of 254 rainfalls events based on over unrained 12 hours. Based on the classification, we estimated 6 parameters (total precipitation, total runoff, peak precipitation/ total precipitation, lag time, time of concentration) to utilize for the training and validation of artificial neural network model. Consequently, correlation of the parameter, which was utilized for the training and the input parameter for the predict and verification were 0.807 and 0.728, respectively. Based on the results, we predict that it can be utilized to estimate concentration time and analyze reliability of urban stream.

A Study on the Interpretalion of the Synthetic Unit Hydrograph According to the Characteristics of catchment Area and Runoff Routing (유역 특성과 유출추적에 의한 단위도 해석에 관한 고찰)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제8권1호
    • /
    • pp.1088-1096
    • /
    • 1966
  • The following is a method of synthetic unitgraph derivation based on the routing of a time area diagram through channel storage, studied by Clark-Jonstone and Laurenson. Unithy drograph (or unitgraph) is the hydrograph that would result from unit rainfall\ulcorner excess occuring uniformly with respect to both time and area over a catchment in unit time. By thus standarzing rainfall characteristics and ignoring loss, the unitgraph represents only the effects of catchment characteristics on the time distribution of runoff from a catchment The situation abten arises where it is desirable to derive a unitgraph for the design of dams, large bridge, and flood mitigation works such as levees, floodways and other flood control structures, and are also used in flood forecasting, and the necessary hydrologie records are not available. In such cases, if time and funds permit, it may be desirable to install the necessary raingauges, pruviometers, and stream gaging stations, and collect the necessary data over a period of years. On the otherhand, this procedure may be found either uneconomic or impossible on the grounds of time required, and it then becomes necessary to synthesise a unitgraph from a knowledge of the physical charcteristics of the catchment. In the preparing the approach to the solution of the problem we must select a number of catchment characteristic(shape, stream pattern, surface slope, and stream slope, etc.), a number of parameters that will define the magnitude and shape of the unit graph (e.g. peak discharge, time to peak, and base length, etc.), evaluate the catch-ment characteristics and unitgraph parameters selected, for a number of catchments having adequate rainfall and stream data and obtain Correlations between the two classes of data, and assume the relationships derived in just above question apply to other, ungaged, Catchments in the same region and, knowing the physical characteritics of these catchments, substitute for them in the relation\ulcorner ships to determine the corresponding unitgraph parameters. This method described in this note, based on the routing of a time area diagram through channel storage, appears to provide a logical line of research and they allow a readier correlation of unitgraph parameters with catchment characteristics. The main disadvantage of this method appears to be the error in routing all elements of rainfall excess through the same amount of storage. evertheless, it should be noted that the synthetic unitgraph method is more accurate than the rational method since it takes account of the shape and tophography of the catchment, channel storage, and temporal variation of rainfall excess, all of which are neglected in rational method.

  • PDF

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • 제55권2호
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

Status of Riparian Vegetation and Implication for Restoration in the Seunggi Stream, Incheon (인천 승기천에서 하안식생의 현황과 복원 방안)

  • Cho, Kang-Hyun;Kim, Jaai;Lee, Hyo Hye Mi;Kwon, Oh Byung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • 제4권2호
    • /
    • pp.62-73
    • /
    • 2001
  • The riparian environments of urban streams in Korea have been disturbed through the channelization for flood control and artificial land use as well as water pollution and flow decrease due to industrialization and urbanization. The flora and vegetation structure were investigated and an implication of stream restoration was discussed for the conservation of biodiversity in the riparian area of the Seunggi stream in Incheon. Naturalized plants and ruderal plants were widely distributed in the riparian area which was disturbed from cultivating, trampling, dumping etc. Submerged and floating hydrophytes were not found in the stream due to channelization and water pollution. Some halophytes were remained in downstream and reservoir after reclamation and embankment. The communities of Humulus japonicus, Panicum dichotomiflorum, Digitaria sanguinalis, Artemisia montana, Amaranthus retroflexus, and Aster pilosus were distributed in the disturbed area of bank slope and floodplain in the stream. As a natural potential vegetation, Phragmites australis in the wet meadow, Typha latifolia, Typha angustifolia, Oenanthe javanica, Persicaria thunbergii, and Penthorum chinense in the marsh, and Salix babylonica and Salix matsudana for. tortuosa in the woodland appeared in the floodplain. The topography in the stream played an important role on the distribution of riparian vegetation in the Seunggi stream. Appropriate methods for conservation and restoration of the riparian ecosystems must be planned on the basis of the actual vegetation in the disturbed urban stream.

  • PDF

Stream Flow Analysis of Dry Stream on Flood Runoff in Islands (도서지역 건천의 홍수유출 시 흐름 해석)

  • Yang, Won-Seok;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • 제22권5호
    • /
    • pp.571-580
    • /
    • 2013
  • In this study, compared with the result of water surface elevation and water velocity on the establishment of river maintenance basic plan and result of HEC-GeoRAS based GIS, and after use the result of water surface elevation and velocity were observed in the Han stream on Jeju island, analysis 2 dimensional stream flow. the lateral hydraulic characteristics and curved channel of the stream were analyzed by applying SMS-RMA2 a 2 dimensional model. The results of the analysis using HEC-RAS model and HEC-GeoRAS model indicated that the distribution ranges of water surface elevation and water velocity were similar, but the water surface elevation by section showed a difference of 0.7~2.18 EL.m and 0.63~1.16 EL.m respectively, and water velocity also showed differences of maximum 1.58m/sec and 2.67m/sec. SMS-RMA2 analysis was done with the sphere of Muifa the typhoon as a boundary condition, and as a result, water velocity distribution was found to be 1.19 through 3.91 m/sec, and the difference of lateral water velocity in No. 97 through 99 the curved channel of the stream was analyzed to be 1.59 through 2.36 m/sec. In conclusion it is anticipated that the flow analysis of 2 dimension model of stream can reflect the hydraulic characteristics of the stream curved channel or width and shape, and can be applied effectively in the establishment of river maintenance basic plan or management and designing of stream.