• Title/Summary/Keyword: Stream Boiler

Search Result 10, Processing Time 0.181 seconds

Evaluation on erosion resistance of STS304 by flyash (Flyash에 의한 STS304 재료의 내침식성 평가)

  • 박해웅;이의열
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.575-584
    • /
    • 2001
  • Erosion due to abrasive particles contained in gas streams from boilers has been emerged as a significant problem in the coal fired power plants. Particle erosion accounted for approximately 50% of boiler failures and especially flyash erosion was responsible for 20~30% of emergency boiler shutdowns. Particularly, because of the high ash loading and high velocity, most erosion occurs in the boiler tubes and economiser tube bank where the direction of the gas stream changes to $180^{\circ}$ .In this study, a high temperature particle erosion tester was used to evaluate erosion rate in a simulated environment. The erosion parameters such as erosion temperature, particle impact angle, particle velocity and various particle size were changed. Flyash is the combustion product of the pulverized coal, where size is ranging from 1 to $200\mu\textrm{m}$. Flyash composed of mainly SiO$_2$, $A1_2$$_O3$, and $Fe_2$$O_3$has dense spherical particles and irregular particles containing numerous pores and cavities. From the erosion tests at various conditions, the maximum erosion was experienced at impact angles of $30^{\circ}$ to $60^{\circ}$ In addition, erosion rate increased in proportional to velocity and temperature. And from the observation of the eroded surfaces, it was also concluded that 304 stainless steel was mainly eroded by extrusion-forging at high impact angle ($90^{\circ}$) and by microcutting mechanism at low impact angles ($30^{\circ}$ and $45^{\circ}$).

  • PDF

Nonlinear System Modeling Using a Neural Networks (비선형 시스템의 신경회로망을 이용한 모델링 기법)

  • Chong, Kil To;No, Tae-Soo;Hong, Dong-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.22-29
    • /
    • 1996
  • In this paper the nodes of the multilayer hidden layers have been modified for modeling the nonlinear systems. The structure of nodes in the hidden layers is built with the feedforward, the cross talk and the recurrent connections. The feedforward links are mapping the nonlinear function and the cross talks and the recurent links memorize the dynamics of the system. The cross talks are connected between the modes in the same hidden layers and the recurrent connection has self feedback, and these two connections receive one time delayed input signals. The simplified steam boiler and the analytic multi input multi output nonlinear system which contains process noise have been modeled using this neural networks.

  • PDF

Particulate Two-Phase Flow Analysis for Fouling Prediction(I)-Design of Hot Wind Tunnel and Its Performance Experiment- (파울링 예측을 위한 가스-입자 이상 유동 해석(1)-고온 풍동 설계 및 성능실험-)

  • Ha, Man-Yeong;Lee, Dae-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3695-3705
    • /
    • 1996
  • We designed the hot wind tunnel to reproduce the conditions of utility boiler and carried out its performance test, in order to investigate the particulate two-phase flow behaviour, the fouling and heat transfer characteristics to the heat exchanger. The hot wind tunnel introduces the control system to control the temperature in the test section. The particle is injected into the hot gas stream. The fouling probe (cylindrical tube) is positioned normal to the particulate gas-particle two-phase flow and cooled by the air. The temperature of gas and cooling air, and temperature in the fouling probe are measured as a function of time, giving the local and averaged heat transfer and fouling factor. The shape of particulate deposition adhered to the fouling probe is also observed.

A Study on Effect of Flow Characteristics for Turbine Impeller Shape (Turbine Impeller 형상이 유동특성에 미치는 영향에 관한 연구)

  • Jeon, Eon-Chan;Youn, Gi-Ho;Kang, Chang-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.36-43
    • /
    • 2014
  • Recently, research has been conducted to develop the ORC (organic Rankine cycle), to recover waste heat from facilities such as industrial plants ultimately to create mechanical or electrical energy. The ORC system consists of a heat exchange, a condenser, a pump and a boiler. In this paper, 84 flow analyses were conducted with 21 cases and three variables, i.e., a number of large wings, a number of small wings, and RPMs. R245fa was used as a refrigerant. The flow cavitation phenomenon was investigated through a flow analysis, and a flow stream analysis was conducted.

Forced Convection Modelling of a Solar Central Receiver using Nonisothermal Cylinders in Crossflow (비등온 실린더 모델을 이용한 태양로의 강제 대류에 의한 열 손실 분석)

  • Chun, Won-Gee;Jeon, Myung-Seok;Jeon, Hong-Seok;Auh, P. Chung-Moo;Boehn, Robert F.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.13-18
    • /
    • 1990
  • When nonuniform thermal boundary conditions are imposed on the surface of a circular cylinder in crossflow, the heat transfer characteristics can be quite different compared to what is found for isothermal or constant heat flux boundary conditions. In the present analysis, two kinds of nonuniform boundary conditions along the circumference of the cylinder are considered in a uniform stream of air: step changes and linear profiles. Step changes in temperature can arise on the surface of an external, cylindrical, solar central receiver. As the working fluid(water) flows through the vertical tubes that ring the circumference of Solar One(a solar central receiver in Barstow, California), the solar flux on the receiver heats the water from a liquid to a superheated state. In this process, portions of the receiver panels, and thus portions of the circumference of the cylinder, function as a preheater, boiler, or superheater. Hence the surface temperature can vary significantly around the cylinder. Common engineering practice has been to use an average wall temperature with an isothermal cylinder heat transfer coefficient when estimating the convective loss in these kinds of situations.

  • PDF

Optimization of Lace Tube with Gray Theory and Design of Experiment (회색 관계 이론과 실험계획을 이용한 Lance Tube Nozzle 최적화)

  • Jeong, Ilkab;Lee, Dongmyung;Lee, Sangbeom;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1001-1006
    • /
    • 2016
  • As consumption of energy is increasing rapidly, energy saving is emphasized in nowadays. Thermal power plant occupies a large proportion in various type of power plant. Major causes of decreased power generation efficiency on thermal power stations is deposition of fly ash. Soot Blower is a facility to remove the ash which is deposited outside of tube by steam blowing on boiler. Residual stream which caused by lance tube in soot blower cannot be discharged steam effectively in lance tube causes reducing the thickness of lance tube. On the contrary, increasing discharge ratio of steam, lance tube cannot sustain proper pressure to remove ash on tube. This study suggests increasing discharge ratio of steam with proper pressure to remove ash on tube by optimization on shape of lance tube nozzle. To optimize shape of nozzle, discharge ratio and maximum blowing pressure on nozzle is selected as object functions. Diameter of nozzle, distance between nozzles, angle of nozzle and gap between nozzle is selected as design parameters. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of design parameters. And grey relational analysis and analysis of mean (ANOM) is performed to optimize shape of lance tube.

[ $CO_2$ ] Recovery from LNG-fired Flue Gas Using a Multi-staged Pilot-scale Membrane Plant (파일럿규모의 다단계 막분리 공정을 통한 LNG 연소 배가스로부터 이산화탄소의 회수연구)

  • Kim, Jeong-Hoon;Choi, Seung-Hak;Kim, Beom-Sik;Lee, Soo-Bok;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.197-209
    • /
    • 2007
  • In this study, a multi-staged pilot-scale membrane plant was constructed and operated for the separation of $CO_2$ from LNG-fired boiler flue gas of 1,000 $Nm^3/day$. The target purity and recovery ratio of $CO_2$ required for the pilot plant were 99% and 90%, respectively. For this purpose, we previously developed the asymmetric polyethersulfone hollow fibers and evaluated the effects of operating pressure and feed concentration of $CO_2$ on separation performance[1,2]. The permeation data obtained were also analyzed in relation with the numerical simulation data using counter-current flow model[3,4]. Based on these results, we designed and prepared the demonstration plant consisting of dehumidification process and four-staged membrane process. The operation results using this plant were compared with the numerical simulation results on multi-staged membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery ratio of $CO_2$ in the final stage permeate stream were ranged from $95{\sim}99%$ and $70{\sim}95%$, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for $CO_2$ recovery from flue gas.

Simultaneous analysis of ethylene glycol and glycolic acid in bio-specimens by GC/MS (생체시료에서 GC/MS에 의한 에틸렌글리콜 및 대사체인 글리콜산 동시분석)

  • Lee, Joon-Bae;Park, Mee-Jung;Sung, Tae-Myung;Choi, Byung-Ha;You, Jae-Hoon;Shon, Shung-Kun;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.544-550
    • /
    • 2010
  • Mistaking pink colored thermal oil for grape wine, a victim drank the oil to death which was analyzed to contain 39% of ethylene glycol. Thermal oil could be used for heat transfer to prevent the malfunction due to the high pressure in the boiler operated at high temperature when using water. Main component of thermal oil is known to be mineral oil or ethylene glycol. From the blood and other tissue of the victim from autopsy, ethylene glycol and its metabolite were simultaneously analyzed by GC/MS after extraction under acidic condition with acetonitrile followed by derivatization with BSTFA. About 0.2 g of the specimens were pretreated with 50 uL of 0.5 M HCl solution to keep acidic condition, then dehydrated with anhydrous sodium sulfate followed by concentration under nitrogen stream. Ethylene glycol and glycolic acid concentration in blood was measured to be $2,755\;{\mu}g/mL$ and $174\;{\mu}g/mL$ respectively. In other specimen, the concentration of ethylene glycol and glycolic acid was $860\;{\mu}g/g\sim1,290\;{\mu}g/g$ and $93\;{\mu}g/g\sim134\;{\mu}g/g$. Especially, crystal appeared in kidney which was supposed xalate from the metabolite of ethylene glycol.

Multi-stage Membrane Process for $CO_2$ Separation from Flue Gas Using PES Hollow Fiber Membrane Modules (폴리이서설폰 중공사모듈을 이용한 연소배가스로부터 이산화탄소 분리회수를 위한 다단계 막분리공정 연구)

  • Choi Seung-Hak;Kim Jeong-Hoon;Kim Eeom-Sik;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.310-319
    • /
    • 2005
  • This paper describes the preliminary study on the development of multi-stage membrane demonstration plant for removal of carbon dioxide from flue gas stream being emitted from LNG boiler in thermal power generation plant. The prerequisite requirement is to design and develop the membrane process producing a $99\%\;CO_2$ with $90\%$ recovery from LNG flue gas of 1,000 $Nm^3$/day. Asymmetric polyethersulfone hollow fiber membranes and membrane modules developed in this laboratory[1] were used in this study. Using the permeation data for the hollow fiber membranes, modelling on the membrane module and multi-stage membrane process was done to meet the requirement condition of the process design. The effects of the operating pressure of feed and permeate side and feed concentration on $CO_2$ purity and recovery were investigated experimentally with the developed hollow fiber modules. These experimental results matched well with theoretical modelling results.

A Numerical Study for Effective Operation of MSW Incinerator for Waste of High Heating Value by the Addition of Moisture Air (함습공기를 이용한 고발열량 도시폐기물 소각로의 효율적 운전을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Shin, Na-Ra;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • Stoker type incinerator is one of the most popular one used as municipal solid waste (MSW) incineration because, in general, it is quite suitable for large capacity and need no preprocessing facility. Nowadays, however, since the combustible portion of incoming MSW increases together with the decrease of the moisture content due to prohibition of directly burying food waste in landfill, the heating value of waste is remarkably increasing in comparison with the early stage of incinerator installation. Consequently, the increased heating value in incinerator operation causes a number of serious problems such as reduction of waste amount to be burned due to the boiler heat capacity together with the significant NO generation in high temperature environment. Therefore, in this study, a series of numerical simulation have been made as parameters of waste amount and the fraction of moisture in air stream in order to investigate optimal operating condition for the resolution of the problems associated with the high heating value of waste mentioned above. In specific, a detailed turbulent reaction flow field calculation with NO model was made for the full scale incinerator of D city. To this end, the injection method of moisturized air as oxidizer was intensively reviewed by the addition of moisture water amount from 10% and 20%. The calculation result, in general, showed that the reduction of maximum flame temperature appears consistently due to the combined effects of the increased specific heat of combustion air and vaporization heat by the addition of water moisture. As a consequence, the generation of NOx concentration was substantially reduced. Further, for the case of 20% moisture amount stream, the afterburner region is quite appropriate in temperature range for the operation of SNCR. This suggests the SNCR facility can be considered for reoperation. which is not in service at all due to the increased heating value of MSW.