• 제목/요약/키워드: Stray light simulation

검색결과 10건 처리시간 0.032초

Study of Stray-light Analysis and Suppression Methods for the Spectroscopic System of a Solar-radiation Observer Instrument

  • Zheng, Ru;Liu, Bo;Wang, Lingyun;Gao, Yue;Li, Guangxi;Li, Changyu
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.220-228
    • /
    • 2021
  • To improve the measurement accuracy of a solar-radiation observer instrument, aiming at the problem of multiorder-stray-light interference caused by the diffraction of the flat-field concave grating in the spectroscopic system, straylight suppression methods for different forms of optical traps are studied. According to the grating surface-scattering distribution-function model, the bidirectional scattering distribution function (BSDF) of a dust-polluted surface and the flat-field concave grating's transition area of the spectroscopic system is calculated, and a Lyot stop with blade baffle is designed to suppress this kind of stray light. For diffraction multiorder stray light, based on the theory of light-energy transmission, a design for precise positioning of the trench optical trap is proposed. The superiority of the method is verified through simulation and actual measurement. The simulation results show that in a spectroscopic system approximately 160 mm × 140 mm × 80 mm in size, the energy of the stray light is reduced by one order of magnitude by means of the trench optical trap and Lyot stop, and the number of beams is reduced from 5664 to 1040. The actual measurements show that the stray-light-suppression efficiency is about 69.4%, which is effective reduction of the amount of stray light.

INTEGRATED OPTICAL MODEL FOR STRAY LIGHT SUPPRESSION AND END-TO-END PERFORMANCE SIMULATION FOR GOCI

  • Ham, Sun-Jeong;Lee, Jae-Min;Youn, Heong-Sik;Kang, Gm-Sil;Kim, Seong-Hui;Kim, Sug-Whan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.274-277
    • /
    • 2006
  • KARI is currently developing a geostationary ocean color imager (GOCI) for COMS. We report the progress in integrated optical modeling and analysis for stray light suppression and the end-to-end instrument performance verification including in-orbit calibration. The Sun is modeled as the emitting light source and the selected area around Korean peninsular as the observation target that scatters the sun light towards GOCI in orbit. The optical ray tracing employing active geometric scaling was then used for precise characterization of the spatial and radiometric performance at the instrument focal plane. The analysis results show positive reduction in the simulated stray light level with the design improvement including baffles. It also indicates that the ray traced in-orbit radiometric performances are effective tools for the independent assessment of more traditional linear and quadratic equation based estimation of water leaving radiance. The concept of integrated GOCI optical model and the computational method are presented.

  • PDF

In-orbit Stray light Performance Simulation for Geostationary Ocean Color Imagers

  • Jeong, Yu-Kyeong;Jeong, Soo-Min;Ryu, Dong-Ok;Kim, Sug-Whan;Hong, Jin-Suk;Youn, Heong-Sik;Woo, Sun-Hee;Kim, Seong-Hui
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.49.4-50
    • /
    • 2009
  • We report stray light modeling and analysis results for the current and proposed next generation ocean color imagers with Sun and the target area around Korean penninsular as viewed from geostationary orbit. The imagers used in this study are GOCI of 140mm in diameter and a proposed next generation GOCI (GOCI-II) of about 300mm in diameter. First, we built complete GOCI and GOCI-II 3D optical system models with the realistic surface characteristics. These optical models were incorporated into the in-house built Intergrated Ray Tracing (IRT) algorithm, connecting the Sun, the measurement target area and the instruments via single ray tracing computation for radiative transfer and scattering. The stray light level was then estimated for possible orbital configurations for science measurement and in-orbit calibration operation. The simulation details, results and their implications are presented.

  • PDF

In-orbit Stray Light Analysis for Step and Stare observation at Geostationary Orbit

  • 오은송;홍진숙;안기범;조성익;류주형;김석환
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.218.2-218.2
    • /
    • 2012
  • In the remote sensing researches, the reflected bright source such as snow, cloud have effects on the image quality of wanted signal. Even though those signal from bright source are adjusted in corresponding pixel level with atmospheric correction algorithm or radiometric correction, those can be problem to the nearby signal as one of the stray light source. Especially, in the step and stare observational method which makes one mosaic image with several snap shots, one of target area can affect next to the other snap shot each other. Presented in this paper focused on the stray light analysis from unwanted reflected bright source for geostationary ocean color sensor. The stray light effect for total 16 slot images each other were performed according to 8 band filters. For the realistic simulation, we constructed system modeling with integrated ray tracing technique which realizes the same space time in the remote sensing observation among the Sun, the Earth, and the satellite. Computed stray light effect in the results of paper demonstrates the distinguishable radiance value at the specific time and space.

  • PDF

자성 철 가루를 이용한 혈액 응고시간 측정법의 광학적 해석 (Optical Analysis for the Estimation of Whole Blood Coagulation Time with Magnetic Particles)

  • 이재현;최형순;장동우;남기봉
    • 한국광학회지
    • /
    • 제24권6호
    • /
    • pp.338-341
    • /
    • 2013
  • 본 논문에서는 혈액의 응고 시간을 나타내는 잣대로 활용되는 PT (prothrombin time)를 반사광을 이용하여 측정하는 방법에 대한 광학적 분석이 기술된다. 혈액에 일정량의 thromboplastin을 정량 추가하면 혈액의 응고 과정이 진행된다. 응고 시간을 측정하기 위하여 혈액에 자성 철 가루를 혼입하고 자석을 회전시키면서 혈액 표면을 레이저로 조사하여 그 반사광의 변화를 측정하였다. 이 신호를 분석하면 표준 값에 대응하는 PT 값을 환산할 수 있었다. 측정된 반사광 신호를 전산 모델링으로 나타내어 측정 원리를 분석한 결과도 같이 제시한다.

Design and Development of a Single-photon Laser and Infrared Common Aperture Optical System

  • Wu, Hongbo;Zhang, Xin;Tan, Shuanglong;Liu, Mingxin;Wang, Lingjie;Yan, Lei;Liu, Yang;Shi, Guangwei
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.171-182
    • /
    • 2022
  • A single-photon laser and mid-wave infrared (MWIR) common aperture optical system was designed and developed to detect and range a long-distance civil aviation aircraft. The secondary mirror of the Ritchey-Chretien (R-C) optical system was chosen as a dichroic lens to realize the design of a common aperture system for the laser and MWIR. Point spread function (PSF) ellipticity was introduced to evaluate the coupling efficiency of the laser receiving system. A small aperture stop and narrow filter were set in the secondary image plane and an afocal light path of the laser system, respectively, and the stray light suppression ability of the small aperture stop was verified by modeling and simulation. With high-precision manufacturing technology by single point diamond turning (SPDT) and a high-efficiency dichroic coating, the laser/MWIR common aperture optical system with a 𝜑300 mm aluminum alloy mirror obtained images of buildings at a distance of 5 km with great quality. A civil aviation aircraft detection experiment was conducted. The results show that the common aperture system could detect and track long-distance civil aviation aircraft effectively, and the coverage was more than 450 km (signal-to-noise ratio = 6.3). It satisfied the application requirements for earlier warning and ranging of long-range targets in the area of aviation, aerospace and ground detection systems.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIFFRACTED LIGHT SIMULATION AND TEST RESULTS FOR A CONE OCCULTER WITH TAPERED SURFACE

  • Yang, Heesu;Bong, Su-Chan;Cho, Kyung-Suk;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Baek, Ji-Hye;Nah, Jakyoung;Sun, Mingzhe;Gong, Qian
    • 천문학회지
    • /
    • 제51권2호
    • /
    • pp.27-36
    • /
    • 2018
  • In a solar coronagraph, the most important component is an occulter to block the direct light from the disk of the sun. Because the intensity of the solar outer corona is $10^{-6}$ to $10^{-10}$ times of that of the solar disk ($I_{\odot}$), it is necessary to minimize scattering at the optical elements and diffraction at the occulter. Using a Fourier optic simulation and a stray light test, we investigated the performance of a compact coronagraph that uses an external truncated-cone occulter without an internal occulter and Lyot stop. In the simulation, the diffracted light was minimized to the order of $7.6{\times}10^{-10}I_{\odot}$ when the cone angle ${\theta}_c$ was about $0.39^{\circ}$. The performance of the cone occulter was then tested by experiment. The level of the diffracted light reached the order of $6{\times}10^{-9}I_{\odot}$ at ${\theta}_c=0.40^{\circ}$. This is sufficient to observe the outer corona without additional optical elements such as a Lyot stop or inner occulter. We also found the manufacturing tolerance of the cone angle to be $0.05^{\circ}$, the lateral alignment tolerance was $45{\mu}m$, and the angular alignment tolerance was $0.043^{\circ}$. Our results suggest that the physical size of coronagraphs can be shortened significantly by using a cone occulter.

Design of Projection Optical System for Target Imaging Simulator with Long Exit Pupil Distance

  • Xueyuan Cao;Lingyun Wang;Guangxi Li;Ru Zheng
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.745-754
    • /
    • 2023
  • In order to test the recognition ability and accuracy of a target imaging simulator under the irradiation of solar stray light in a laboratory environment, it needs to be fixed on a five-axis turntable during a hardware-in-the-loop simulation test, so the optical system of the simulator should have a long exit pupil distance. This article adopts a secondary imaging method to design a projection optical system suitable for thin-film-transistor liquid crystal displays. The exit pupil distance of the entire optical system is 1,000 mm, and the final optimization results in the 400 nm-850 nm band show that the modulation transfer function (MTF) of the optical system is greater than 0.8 at the cutoff frequency of 72 lp/mm, and the distortion of each field of view of the system is less than 0.04%. Combined with the design results of the optical system, TracePro software was used to model the optical system, and the simulation of the target imaging simulator at the magnitude of -1 to +6 Mv was analyzed and verified. The magnitude error is less than 0.2 Mv, and the irradiance uniformity of the exit pupil surface is greater than 90%, which meets the requirements of the target imaging simulator.

차단전압 균형과 넓은 부하범위를 갖는 새로운 3-레벨 ZVS PWM DC-DC 컨버터 (A Novel Three-Level ZVS PWM Inverter Topology for High-Voltage DC/DC Conversion Systems with Balanced Voltage Sharing and Wider Load Range)

  • 송인호;유상봉;서범석;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.71-75
    • /
    • 1996
  • As the Three-level ZVS PWM DC-DC converter operates likewise full-bridge ZVS PWM DC-DC converter and the blocking voltage of each switching device is a half of the DC-link voltage, it is suitable for the high imput voltage applications. However, it has some problems as follows; The blocking voltage of each devices is unbalanced and it causes the power losses of the inner switching devices to be increased. Also, it has narrow load range so that the switching losses and the efficiency are reduced as it goes to the light load. This paper presents an nove Three-level ZVS PWM DC-DC converter, which can reduce the overvoltage of the outer switches, eliminate the unbalance of the voltage sharing between the switches at turn-off due to the stray inductances, and operate from no load to full load. The characteristics and the performances of the proposed Three-level ZVS PWM DC-DC converter are verified by simulation and experimental results

  • PDF

Radiative transfer analysis for Amon-Ra instrument

  • Seong, Se-Hyun;Ryu, Dong-Ok;Lee, Jae-Min;Hong, Jin-Suk;Kim, Seong-Hui;Yoon, Jee-Yeon;Park, Won-Hyun;Lee, Han-Shin;Park, Jong-Soo;Yu, Ji-Woong;Kim, Sug-Whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.28.4-29
    • /
    • 2009
  • The 'Amon-Ra' instrument of the proposed 'EARTHSHINE' satellite is a dual (i.e. imaging and energy) channel instrument for monitoring the total solar irradiance (TSI) and the Earth's irradiance at around the L1 halo orbit. Earlier studies for this instrument include, but not limited to, design and construction of breadboard Amon-Ra imaging channel, stray light suppression and system performance computation using Integrated Ray Tracing (IRT) technique. The Amon-Ra instrument is required to produce 0.3% in uncertainty for both Sunlight and Earthlight measurement. In this study, we report accurate estimation of the output electric signal derived from the orbital variation of radiant exitance from the Sun and the Earth arriving at the aperture and detector plane of the Amon-Ra. For this, orbital irradiance are computed analytically first and then confirmed by simulation using Integrated Ray Tracing (IRT) model. Specially, the results show the arriving power at the bolometer detector surface is $1.24{\mu}W$ for the Sunlight and $1.28{\mu}W$ for the Earthlight, producing the output signal pulses of 34.31 mV and 35.47 mV respectively. These results demonstrate successfully that the arriving radiative power is well within the bolometer detector dynamic range and, therefore, the proposed detector can be used for the in-orbit measurement sequence. We discuss the computational details and implications as well as the simulation results.

  • PDF