• Title/Summary/Keyword: Stratified thermal storage tank

Search Result 19, Processing Time 0.023 seconds

Effect of Design Factors on the Performance of Stratified Thermal Storage Tank (성층축열조의 성능에 대한 설계인자의 영향)

  • Chung Jae Dong;Park Joohyuk;Cho Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1077-1083
    • /
    • 2004
  • This study is to systematically analyze the effect of various kinds of design factors on the performance of stratified thermal storage tank. Taguchi method, known as a very reasonable tool in the parametric study, is employed in the present work. Three dimensional unsteady numerical experiment is conducted for 4 design parameters of stratified thermal storage tank: inlet Reynolds number, Froude number, diffuser size d with 3 levels (Re=400, 800, 1200, Fr=0.5, 1.0, 2.0 and d=150 mm, 200mm, 300 mm) and diffuser shape with 2 levels. Orthogonal array $L_{18}(2{\times}3^7)$ is adopted for the analysis of variance. The result gives quantitative estimation of the various design parameters affecting the performance and helps to select the main factors for the optimum design of stratified thermal storage tank. Reynolds number is found to be the most dominant parameter and the diffuser shape plays significant role on the performance of stratified thermal storage tank. Based on this finding, the prior questions on the contribution of the diffuser shape proposed by the authors become clear. The optimum condition for the performance is a set of d=300mm, Re=800, and radial regulated plate diffuser. Conformation test shows the repeatability in the analysis and $1.3\%$ difference between the estimated thermocline thickness and that of numerical result.

The Study on Efficiency Improvement of a Thermal Storage Tank for Solar Combined Heating System (태양열원 난방기의 수축열조 효율개선에 관한 연구)

  • Ryu, Nam-Jin;Han, Yu-Ry;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • This study is conducted to improve the efficiency of a thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from the solar or the others heat sources. However, it has difficulties in storing heat with nonuniform temperature through the entire tank with respect to the vertical direction, This study is focused on the thermal stratification to improve thermal comfort for the resident in house. To enhance temperature stratification of the tank, a distributor was designed and installed in the middle of the storage tank vertically. The vertically designed distributor could supply the return water with stratified temperature in the storage tank with respect to the height. The water velocity from the distributor hole is the same with the other outlet in the distributor. However, gravity effect on the flow in the storage tank is much higher than that of the velocity effect due to that Froude Number is less than 1. During the heat charging process in the storage tank, temperature maintained with little difference with respect to the height. However the charging process takes long time to get a effective temperature for the heating or hot water supply because of all of water in the storage tank needs to be heated.

Performance Improvement of Stratified Thermal Storage Tank Using Heat Insulator (단열층 사용을 통한 성층 축열조 성능개선)

  • Lim, Se Hwa;Lee, Tae Gyu;Shin, Seungwon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • The purpose of this study is to design a heat insulator for reducing available energy loss in stratified thermal storage tank. Heat insulator is operated by buoyancy effect from density difference between hot and cold water without extra equipment. Analysis model using the Matlab Simulink was developed to estimate the internal temperature distribution in thermal storage tank and also used to select proper material and thickness of the heat insulator. Operational feasibility was confirmed through reduced scale experiment. As a result, heat insulator can effectively delay the formation of thermal boundary layer between hot and cold water. In reduced scale experiment, heat insulator can preserve additional 1540J of available energy. When applied to the real thermal storage tank, increase of 6% thermal storage efficiency can be expected.

Transient Response of a Stratified Thermal Storage Tank to the Variation of Inlet Temperature

  • Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.14-26
    • /
    • 1998
  • This paper deals with approximate analytical solutions for the two-region one-dimensional model describing the charging process of stratified thermal storage tanks at variable inlet temperature with momentum-induced mixing. An arbitrarily increasing inlet temperature is decomposed into inherent step changes and intervals of continuous change. Each continuous interval is approximated as a finite number of piecewise linear functions, which admits an analytical solution for perfectly mixed region. Using the Laplace transform, the temperature profiles in plug flow region with both the semi-infinite and adiabatic ends are successfully derived in terms of well-defined functions. The effect of end condition on the solution proves to be negligible under the practical operating conditions. For a Quadratic variation of inlet temperature, the approximate solution employing a moderate number of pieces agrees excellently with the exact solution.

  • PDF

Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 해석적인 해)

  • Yoo, H.;Pak, E.-T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

A Study on Transient Thermal Behavior During the Charging Process in a Stratified Water Storage Tank and Its Storage Efficiency (성층 온수 저장 중 과도 열거동과 축열효율에 관한 연구)

  • Pak, E.T.;Chu, Y.J.;Kim, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 1997
  • In this study, the theoretical equation of thermal storage efficiency was established to applied long term hot water storage system. The, effective thermal diffusivity and storage efficiency were, measured through the experiment to predict the degree of mixture in thermal storage tank. The effective thermal diffusivity was inversely preportional to the storage efficiency. The most effective storage efficiency was obtained under condition of low flow rate and using the perforated distributor.

  • PDF

Effect on Stratification due to Diffuser Shape in a Thermal Storage Tank (온도 성층축열조 가시화 및 실증분석에 관한 고찰)

  • Lee Young-Soo;Lee Sang-Nam;Kim Jong-Ryul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.990-997
    • /
    • 2005
  • The stratified effect was investigated with three different types of diffuser shape in a thermal storage tank with variation of diffuser diameter, velocity, Froude number etc. Its effect was estimated by the degree of stratification. No matter of diffuser diameter and shape, the degree of stratification was the best as the Froude number gets closer to 1. In the case of a curved diffuser, when its diameter is a quarter of tank diameter and ejection velocity in a diffuser is approximately 0.2 m/s, the Froude number was almost 1. In the case of a flatted diffuser, when ejection velocity was 0.05 m/s, the Froude number was 1.5. Both cases which Froude number were nearer 1, showed the good degree of stratification.

Integral Approximate Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 적분 근사해)

  • Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.468-473
    • /
    • 2010
  • This paper deals with approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks. Temperature is assumed to be the form of Fermi-Dirac distribution function, which can be separated to two sets of cubic polynomials for each hot and cold side of thermal boundary layers. Proposed approximate integral solutions are compared to the previous works of the approximate analytic solutions and show reasonable agreement. The approach, however, has benefits in mathematical difficulties, complicated solution form and unstable convergence of series solution founded in the previous analytic solutions. Solutions for a semi-infinite region, which have simple closed form solutions, give close agreement to those for a finite region. Thermocline thickness is obtained in closed form and shows proportional behavior to the square root of time and inverse proportional behavior to the square root of flow rate.

Analysis on the Coldness Release Process of Ice Storage Tank (빙축열조의 방냉과정에 대한 해석)

  • Yoo, H.S.;Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.9-20
    • /
    • 1989
  • This paper presents an analysis to predict thermal behaviors of water in ice storage tank during the coldness release process. To deal with complicated transient phenomena due to ice-water phase change and the density inversion, a theoretical model which consists of initial perfectly mixed, stratified and thermal diffusion state was introduced and a criterion on the growth of thermal boundary layer was developed. The analysis includes considerations on the type of ice-making heat exchanger, refrigerator on/off and tank arrangement. Also, discussions on the various parameters and operating conditions which have influence on the performance of the system were made. Finally, simulated results were shown, which agreed with experiments in trends reasonably.

  • PDF