• Title/Summary/Keyword: Stratified flows

Search Result 52, Processing Time 0.025 seconds

An Immersed Boundary Method for Simulation of Density-Stratified Flows (밀도 성층 유동 해석을 위한 가상 경계법)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.940-947
    • /
    • 2005
  • An immersed boundary method for simulation of density-stratified flows has been developed and applied to computation of viscous flows past three different types of obstacle under table density stratification, namely laminar flows past a vertical barrier, a cosine hill, and a sphere, respectively. Density forcing is introduced on the body surface or inside the body. Significant changes in flow characteristics are observed depending on Fr. The numerical results are in good agreement with other authors' experimental and numerical results currently available, and shed light on computation of density-stratified flows in complex geometries.

ON THE BOUNDS FOR WAVE STABILITY OF STRATIFIED SHEAR FLOWS

  • S. LAVANYA;V. GANESH;G. VENKATA RAMANA REDDY
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.105-121
    • /
    • 2024
  • We consider incompressible, inviscid, stratified shear flows in β plane. First, we obtained an unbounded instability region intersect with semi-ellipse region. Second, we obtained a bounded instability regions depending on Coriolis, stratification parameters and basic velocity profile. Third, we obtained a criterion for wave stability. This has been illustrated with standard examples. Also, we obtained upper bound for growth rate.

An Immersed-Boundary Method for Simulation of Density-Stratified Flows (밀도 성층 유동 해석을 위한 가상경계법)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Hwang, Jong-Yeon;Lee, Sung-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1909-1914
    • /
    • 2004
  • An immersed boundary method for simulation of density-stratified flows is developed and applied to computation of viscous flows over two-dimensional obstacles in a bounded domain under stable density stratification. Density sources/sinks are introduced on the body surface. Two obstacle shapes are used, a vertical barrier and a smooth cosine-shaped hill; weak stratification, defined by $K=ND/{\pi}U{\leq}1$, where U, N, and D are the upstream velocity, buoyancy frequency, and domain height, respectively, is considered. The results are consistent with other authors' calculations, and shed light on computation of density-stratified flows in complex geometries.

  • PDF

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow (열성층 배관 유동에 대한 3차원 열전달 해석)

  • Jo Jong Chull;Kim Byung Soon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

Experimental Investigation of Parametric Effects on the Void Fraction Measurement and Flow Regime Characterization by Capacitance Transducers -Part I : Stationary Test- (캐패시턴스 변환기를 이용한 기포율 측정과 유동영역결정에 미치는 각종변수의 영향에 관한 실험적연구 -제1부 : 적정실험결과-)

  • Moon-Hyun Chun;Chang-Kyung Sung
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.34-44
    • /
    • 1985
  • The main purpose of this work is to study the effects of (1) configuration, size, and materials of electrodes, (2) flow pattern, (3) electrode position with respect to a dielectric boundary on the void fraction measurement and flow regime characterization by capacitance transducers. From the experimental results, relationships between the measured relative capacitance and void fraction are obtained for both annular and stratified flow systems under static condition, and this result is compared with theoretical predictions. From this study it can be concluded that (1) the strip-type electrodes are more sensitive than ring-type electrodes for both annular and stratified flows, (2) electrode size does not affect the relative capacitance vs. (1-$\alpha$) curve, and (3) electrode position is important for stratified flows but it has no effect on annular flows.

  • PDF

Stratified Steady and Unsteady Two-Phase Flows Between Two Parallel Plates

  • Sim Woo-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.125-132
    • /
    • 2006
  • To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated.

Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations (타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측)

  • Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.