• 제목/요약/키워드: Strang splitting

검색결과 3건 처리시간 0.016초

EFFICIENT NUMERICAL METHODS FOR THE KDV EQUATION

  • Kim, Mi-Young;Choi, Young-Kwang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권4호
    • /
    • pp.291-306
    • /
    • 2011
  • We consider the second order Strang splitting method to approximate the solution to the KdV equation. The model equation is split into three sets of initial value problems containing convection and dispersal terms separately. TVD MUSCL or MUSCL scheme is applied to approximate the convection term and the second order centered difference method to approximate the dispersal term. In time stepping, explicit third order Runge-Kutta method is used to the equation containing convection term and implicit Crank-Nicolson method to the equation containing dispersal term to reduce the CFL restriction. Several numerical examples of weakly and strongly dispersive problems, which produce solitons or dispersive shock waves, or may show instabilities of the solution, are presented.

단일 균열암반에서 핵종/콜로이드 복합이동에 대한 수치모델 개발 (Development of the Numerical Model for Complex Transport of Radionuclide and Colloid in the Single Fractured Rock)

  • 이상화;김정우;정종태
    • 방사성폐기물학회지
    • /
    • 제10권4호
    • /
    • pp.237-246
    • /
    • 2012
  • 본 연구에서는 콜로이드와 핵종의 복합이동에 관한 수치모델을 개발하였다. 콜로이드와 핵종의 반응-이동 지배방정식을 풀기 위하여 Operator Splitting Method 중 Strang의 분리 SNI 방식을 수치해석 방법으로 채택하였고 이는 MATLAB을 이용하여 코드화 되었다. 개발된 수치모델은 용질의 이동 및 분산만을 고려한 해석해를 통한 검증과정에서 피어슨 상관계수의 제곱값($r^2$)이 0.99 이상으로 나타나 모델의 정확성이 입증되었다.

A MULTI-DIMENSIONAL MAGNETOHYDRODYNAMIC CODE IN CYLINDRICAL GEOMETRY

  • Ryu, Dong-Su;Yun, Hong-Sik;Choe, Seung-Urn
    • 천문학회지
    • /
    • 제28권2호
    • /
    • pp.223-243
    • /
    • 1995
  • We describe the implementation of a multi-dimensional numerical code to solve the equations for idea! magnetohydrodynamics (MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.

  • PDF