• Title/Summary/Keyword: Strake Incidence-Angle

Search Result 2, Processing Time 0.021 seconds

Control of Delta-Wing Vortex by Apex Strake

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • The vortex flow characteristics of a double-delta wing, which can change the incidence angle of its apex strake was investigated through the wing-surface pressure measurement and the particle image velocimetry(PIV) measurement of the wing-leeward flow region. The apex strake has sharp edges and can change its incidence angle with a hinge line at the 23% chord position measured from the apex of the main wing. The present study revealed that the incidence-angle change of the apex strake could greatly alter the vortex flow pattern around the double-delta wing and the wing-surface pressure distribution, which suggested that the apex strake could be used as an effective device for the active control of delta-wing vortex flow.

Effects of Strake Incidence-Angle on the Vortex Flow of a Double-Delta Wing (스트레이크 붙임각이 이중 삼각날개의 와류에 미치는 영향)

  • 손명환;정형석;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.7-15
    • /
    • 2006
  • The effects of strake incidence-angle on the vortex characteristics and the wing-surface pressure distribution for a double-delta wing with strake were investigated experimentally. The strake incidence-angle of negative sign(strake is pitched down from the main-wing upper-surface) increased the suction pressure of the wing-upper surface, which was the same effect of increase of angle of attack. This change of the suction pressure was caused by the closer movement of the vortex cores to the wing upper surface rather than the increase of the vortex strength.