• Title/Summary/Keyword: Strain-based assessment

Search Result 184, Processing Time 0.022 seconds

Structural Strength Assessment of Simplified Mark III CS Plate (단순화된 Mark III 방열판의 구조 강도 평가에 관한 연구)

  • Jeong, Han-Koo;Yang, Young-Soon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.539-543
    • /
    • 2011
  • LNG cargo containment system (CCS) has the primary function of ensuring adequate thermal insulation with keeping natural gas below its boiling point. From the viewpoint of structural design, this LNG CCS can be treated as a laminated composite structure showing complex structural responses under the sloshing load which can be defined as a violent behavior of the liquid contents in cargo tanks due to external forced motions. As LNG CCS type, Mark III containment system from TGZ is considered in this paper and then its structural strength assessment is performed based on a simple higher-order shear deformation theory and maximum stress, maximum strain, Tsai-Wu failure criteria developed for laminated composite plates. The assessment is performed to the initial failure of the Mark III CS plate by investigating failure locations and loads.

  • PDF

Fatigue Assessment of Butt Joint with Weld Defect in Steel Bridge (강교 용접 결함부의 피로평가)

  • Juhn, Gui Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.98-107
    • /
    • 1998
  • There are many weld defects such as surface crack, lack of fusion, and imcomplete penetration in the butt joint of the existing steel bridges. The crack-like defects may significantly reduce the fatigue life of the structure. This paper presents the procedure and the results of the fatigue assessment of the butt joints with weld defect in the existing steel girder bridge. The butt joints with imcomple penetration were instrumented with strain gages to determine the stress histogram under normal traffic. Based on the measured stress histogram the crack propagation analyses were performed for the fatigue assesment. By using the suggested procedure and methodology, one can decide the time of periodic inspection and the necessity of repair of the butt joints with serious weld defects in the existing steel bridge.

  • PDF

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

Ductile Failure Analysis of Defective API X65 Pipes Based on Stress-Modified Fracture Strain Criterion (파괴변형률모델에 기초한 결함이 존재하는 API X65 배관의 연성파괴 해석)

  • Oh, Chang-Kyun;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1086-1093
    • /
    • 2006
  • A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure fur API X65 pipes with gouge defects.

A Case Study of Building Damage Risk Assessment Due to the Strutted Excavation: Design Aspects (지보굴착에 따르는 인접건물의 손상위험도 평가사례: 설계단계)

  • Lee Sun-Jae;Song Tae-Won;Lee Youn-Sang;Song Young-Han;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.99-112
    • /
    • 2005
  • The ground excavation in the urban area induces in general ground movement and subsequent damage on the adjacent building structures. So the essentials in the designing stage are the prediction of ground movement induced by the ground excavation and the damage risk assessment of buildings adjacent to the excavation. A propsed prediction method of the ground movement induced by the strutted excavation has been studied with due consideration of the existing ground movement prediction methods. A building damage risk assessment method based on the angular distortion and the horizontal strain derived from the green-field ground movement is also proposed. These methods have been applied successfully in the on-going deep excavation project in Singapore.

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF

Nonlinear FEM Analysis for Damage Assessment of Steel Members under Very-Low-Cycle Loading (극저(極低)사이클 하중하(荷重下)에서 강부재(鋼部材)의 손상도평가(損傷度評價)를 위한 유한요소해석(有限要素解析))

  • Park, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.703-710
    • /
    • 1994
  • A nonlinear FEM analysis of steel members under very-low-cycle loading has been performed in conjunction with experimental works. This analysis is an FEM tracing toward cracking of steel members under cyclic loads such as a strong earthquake. After verifying the procedure by comparing global hysteretic behaviors from the analytical and experimental results, the local stress-strain hysteresis at critical sections for large cyclic deformations was traced by the numerical analysis. Local strain history was discussed in relation to cracking. Based on the experimental and analytical results, a new approach to seismic safety assessment for steel members was proposed in this paper.

  • PDF

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.