• Title/Summary/Keyword: Strain test

Search Result 4,726, Processing Time 0.037 seconds

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

Evaluation of Sample Quality for Marine Clay by Large Block Samples (대형블럭시료를 이용한 해성점토 시료의 품질 평가)

  • Kim, Jong-Kook;Yoon, Won-Sub;Kim, Ji-Hee;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1004-1011
    • /
    • 2008
  • In this study, obtained large block sample and piston sample of marine clay in korea were performed unconfined compression and consolidation test. Soil properties of two type samples such as failure strain, between two parameter's ratio($E_{50}$ and $q_u$), and volumetric strain were used to evaluate sample disturbance. The result, large block samples show a low disturbance than piston samples. Therefore, we suggest new sample disturbance evaluated method through the relation of OCR and volumaric strain at shallow of marine clay in Korea and suggest new sample disturbance classified method by subdivided grade for failure strain of unconfined compression test.

  • PDF

The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess (풍화 화연토와 loess의 붕괴특성 비교)

  • 도덕현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF

Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete

  • Mugisha, Aurore;Teomete, Egemen
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.399-408
    • /
    • 2019
  • Structural health monitoring is important for the safety of lives and asset management. In this study, numerical models were developed for the piezoresistive behavior of smart concrete based on finite element (FE) method. Finite element models were calibrated with experimental data collected from compression test. The compression test was performed on smart concrete cube specimens with 75 mm dimensions. Smart concrete was made of cement CEM II 42.5 R, silica fume, fine and coarse crushed limestone aggregates, brass fibers and plasticizer. During the compression test, electrical resistance change and compressive strain measurements were conducted simultaneously. Smart concrete had a strong linear relationship between strain and electrical resistance change due to its piezoresistive function. The piezoresistivity of the smart concrete was modeled by FE method. Twenty-noded solid brick elements were used to model the smart concrete specimens in the finite element platform of Ansys. The numerical results were determined for strain induced resistivity change. The electrical resistivity of simulated smart concrete decreased with applied strain, as found in experimental investigation. The numerical findings are in good agreement with the experimental results.

Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test (유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보))

  • Kim, Young-Suk;Kim, Jin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.718-725
    • /
    • 2016
  • In this study, the plastic flow curve of commercially pure titanium sheet (CP Ti) actively used in the plate heat exchanger etc., was evaluated. The plastic flow curve known as hardening curve is a key factor needed in conducting finite element analyses (FEA) for the forming process of a sheet material. A hydraulic bulge test was performed on the CP Ti sheet and the strain in this test was measured using the DIC method and ARAMIS system. The measured true stress-true strain curve from the hydraulic bulge test (HBT) was compared with that from the tensile test. The measured true stress-true strain curve from the hydraulic bulge test showed stable plastic flow curve over the strain range of 0.7 which cannot be obtained in the case of the uniaxial tensile test. The measured true stress-true strain curve from the hydraulic bulge test can be fitted well by the hardening equation known as the Kim-Tuan model.

Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis (SHPB 시험 및 영상분석을 통한 고변형율 속도 하의 시멘트 복합체 물성 변화 평가)

  • Cho, Hyun-Woo;Lee, Jang-Hwa;Min, Ji-Young;Park, Jung-Jun;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.83-91
    • /
    • 2015
  • Under impact or blast loads, concrete behaves with different mechanical properties comparing to the static loading conditions. In other words, with high strain rate, mechanical properties of concrete vary significantly. To evaluate the compressive characteristics of concrete with high strain rate, SHPB(Split Hopkinson Pressure Bar) test is typically used. However, because SHPB test method has been developed for metallic materials, it is necessary to verify the applicability of SHPB for brittle materials such as concrete. Also, there have been little researches on the evaluations of mechanical characteristics of UHPC under high strain rate conditions. This study has been performed to evaluate and analyse the compressive characteristics of plain concrete and UHPC with SHPB test apparatus. Also, to verify the applicability of SHPB test for concrete, direct displacement image analysis with high speed camera was performed for the comparisons with analytical solutions for SHPB test.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 이축 인장시험에 관한 연구)

  • Kim, Dong-Jin;Kim, Wan-Doo;Kim, Wan-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

Development and validation of strip bending tester for measuring mechanical properties of freestanding thin films (자유지지 박막의 기계적 물성 측정을 위한 띠굽힘시험기의 개발 및 검증)

  • Park, Jung-Min;Kim, Jae-Hyun;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.49-55
    • /
    • 2008
  • Strip bending test has been frequently utilized to measure the mechanical properties of freestanding thin films in substitute for the micro-tensile test. However, in spite of its simplicity and reliability, strip bending test has a few problems, for example, the measurement of strain and the calculation of stress at zero strain. In this study, these problems are precisely reviewed and proved. Upon this review, strip bending tester has been developed, which uses the confocal laser displacement meter to measure the deformed configuration of the specimen and the possibility and limitation of this testing system is carefully investigated including the estimation of uncertainty of the measurement of strain. Finally, to prevent errors and to improve the accuracy of this testing system, the shape of the specimen has been carefully studied and is proposed.

  • PDF

A Study on the Calculation f Maximum Strain of Propeller Shaft Coating Materials (프로펠러축 피복재의 최대 스트레인 계산에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.219-224
    • /
    • 1998
  • Recently to achieve the anti-corrossive effect in propeller shafts the coating technique with suit-able coating materials is available instead of bronze-sleeved shafts. In this case the coating mate-rials in service must not be delaminated from the shaft and the crack must not be originated. Thus the various performance and security test for coating materials of propeller shaft must be carried out under the real conditions or more severe circumstance. The most important factors effecting on the funtion of coating materials in propeller shaft are the strain and the environment of sea water. In this paper therefore the maximum possible strain which can be occured in real propeller shaft was calculated based on IACA standard classification rule in order to give the proper level of strain to the test samples in performance test of propeller shaft coating materials.

  • PDF

Hemi-spheroidal Punch Stretching Test for Evaluation Press Formability (프레스 가공성 평가를 위한 반타원체 펀치 장출 시험)

  • Lee, Seung-Yeol;Geum, Yeong-Tak
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.539-544
    • /
    • 1998
  • Hemi-spheroidal punch stretching test was developed to evaluate the press formability of sheet materials. In the plane strain stretching tests our specially designed hemi-spheroidal head punch were used. In the experiment the circular sheet blanks with parallel edge sides are uniformly stretched up to fracture by raising these punches to assure plane strain stretching deformation along the longitudinal direction of the specimens. The press formability was evaluated by limit punch height(LPH) and minor strain mea-surement around the fracture area. Compared with the hemi-spherical punch and the hemi-cylindrical one our hemi-spheroidal punch was more useful in the experimental reproduction and reliance for press formability test.

  • PDF