• Title/Summary/Keyword: Strain relaxation

Search Result 234, Processing Time 0.028 seconds

Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics (기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Shrinkage Stress Analysis of Concrete Slab with Shrinkage Strip in Multi-Story Building (수축대를 사용한 고층건물 콘크리트 슬래브의 건조수축응력 해석)

  • 김한수;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.726-733
    • /
    • 2002
  • Shrinkage strip or separation strip is a temporary joint that is left open for a certain time during construction to allow a significant part of the shrinkage to take place without inducing stress. A shrinkage stress analysis method of shrinkage strip in concrete slab of multi-story building considering the relaxation effect of creep and construction sequence is proposed. The analysis results of 10-story example building show that the effect of shrinkage strip can be analyzed easily by the proposed method. And shrinkage strip installed in a particular floor makes the stress of that floor reduced and the stress of the other floors increased a little. The rate and amount of stress reduced with closing time mainly depends on the development of shrinkage with time of concrete model used. The amount of stress reduced is determined by the amount of shrinkage strain developed before the closing of shrinkage strip.

Effect of Arsenic on Heat Shock Protein and Vascular Contractility of Rat Aorta (횐쥐 대동맥의 수축반응과 열충격단백질에 대한 비소의 영향)

  • 박태규;권윤정;김중영
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.651-657
    • /
    • 2003
  • In order to examine if arsenic, one of environmental stresses, contributes to hypertension as one of cardiovas cular pathological factors, this study was perfarmed in vivo and in vitro, using intacted or pithed rats and aorta ring preparation, respectively. And also the relationship between expression of heat shock protein (HSP) 90 and vasoactives-induced contractile response was elucidated. To measure blood pressure, the carotid arterial pressure was recorded on physiograph(Grass Co. 79E) connected to strain gauge. On the other hand, contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And HSP was detacted by Western blotting whole cell Iysis. Preganglionic nerve stimulation was increased by 26.0% in arterial pressure of rat treated with arsenic. Vascular contractile response was monitored and HSP were measured by Western blotting of whole Iysis prepared from samples exposed with 0, 0.5, 1, 2 and 4 mM of arsenic for 8 hours. The dose-vascular responses of potassium chloride were augmented by increasing dose of arsenic in the strips exposed to arsenic for 8 hours, and were not augmented for 1, 3, 5 hours. And the response of relaxation of rat aorta induced by histamine was not influenced by arsenic stress. The increase of HSP 90 expression in rat aorta was pronounced at 8 hours after 4 mM of arsenic treatment, but HSP 60 expression was not. Arsenic stress not only increased the expression of HSP 90 in the rat aorta, but also augmented contractions to potassium chloride. These results indicated that arsenic stress was sufficient to induce heat shock protein 90, resulting in increased vascular contractility in rat aorta.

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy (2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구)

  • Kim Jeoung Han;Yeom Jong Taek;Park Nho Kwang;Lee Chong Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

A Development of Explicit Algorithm for Stress-Erection Analysis of STRARCH System (스트라치 시스템의 긴장응력해석을 위한 명시적 해석법의 개발)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.513-520
    • /
    • 2011
  • In this paper, the advanced explicit algorithm is proposed to simulate the stress-erection process analysis of Strarch system. The Strarch(Stressed-Arch) system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames which are erected by a post-tensioning stress-erection procedure. The flexible bottom chord which have sleeve and gap detail are closed by the reaction force of prestressing tendon. The prestress imposing to the tendon will make the Strarch system to be erected. This post tensioning process is called as "stress-erection process". During the stress-erection process, the plastic rigid body rotation is occurred to the flexible top chord by the excessive amount of plastic strain, and the structural characteristic becomes to be unstable. In this study, the large deformational beam-column element with plastic hinge is used to model the flexible top chord, and the advanced Dynamic Relaxation method(DRM) are applied to the unstable problem of stress-erection process of Strarch system. Finally, the verification of proposed explicit algorithm is evaluated by analysing the stress-erection of real project of Strarch system.

A Study on the Shrinkage Stresses in Polymer Concrete Overlays (폴리머 콘크리트 오버레이의 수축응력에 관한 연구)

  • Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 1997
  • The shrinkage of polymer concrete overlays to cement concrete causes interface shear, normal and axial stresses in the overlays. These can lead to deterioration of the polymer concrete overlays due to affection of adhesion polymer concrete and cement concrete. The shrinkage stress in the polymer concrete cause it to shorten and the shorting is measured: With the modulus of elasticity of the polymer concrete and strain known the stresses can be calculated. The purpose of this study is to provide the basic data of application of polymer concrete overlays such as bridge decks, highway and airport pavement repair and overlay materials. From the test results. It has been found that depending on the type polymer. overlay thickness, time after curing and temperature. the shrinkage stresses are eliminated by relaxation in time ranging from a few hours to a few days.

A Study on the Precipitation Behavior of Carbide Particle in L12-type Intermetallic Compound Ni3Al (L12형 금속간화합물 Ni3Al중에 탄화물입자의 석출거동에 관한 연구)

  • Han, Chang-Suk;Koo, Kyung-Wan;Oh, Dong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening discovered in $L1_2-ordered\;Ni_3(Al,Cr)$ containing 0.2 to 3.0 mol% of carbon using transmission electron microscopy (TEM). Fine octahedral precipitates of $M_{23}C_6$ appeared in the matrix by aging at temperatures around 973 K after solution treatment at 1423 K. TEM examination revealed that the $M_{23}C_6$ phase and the matrix lattices have a cube-cube orientation relationship and keep partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the $M_{23}C_6$ precipitates then adopt a rod-like morphology elongated parallel to the <100> directions. Deformation at temperature below 973 K, typical Orowan loops were observed surrounding the $M_{23}C_6$ particles. At higher deformation temperatures, the Orowan loops disappeared and the morphology of dislocations at the particle-matrix interfaces suggested the existence of attractive interaction between dislocations and particles. The change of the interaction modes between dislocation and particles with increasing deformation temperature can be considered as a result of strain relaxation at the interface between matrix and particles.