• Title/Summary/Keyword: Strain ratio

Search Result 2,183, Processing Time 0.025 seconds

Elimination of the effect of strain gradient from concrete compressive strength test results

  • Tabsh, Sami W.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.375-388
    • /
    • 2006
  • Poor strength test results are sometimes not an indication of low concrete quality, but rather inferior testing quality. In a compression test, the strain distribution over the ends of the specimen is a critical factor for the test results. Non-uniform straining of a concrete specimen leads to locally different compressive stresses on the cross-section, and eventual premature breaking of the specimen. Its effect on a specimen can be quantified by comparing the compressive strength results of two specimens, one subjected to uniform strain and another to a specified strain gradient. This can be done with the help of a function that relates two parameters, the strain ratio and the test efficiency. Such a function depends on the concrete strength and cross-sectional shape of the specimen. In this study, theoretical relationships between the strain ratio and test efficiency are developed using a concrete stress-strain model. The results show that for the same strain ratio, the test efficiency is larger for normal strength concrete than for high strength concrete. Further, the effect of the strain gradient on the test result depends on the cross-sectional shape of the specimen. Implementation of the results is demonstrated with the aid of two examples.

Comparison of One- and Two-Region of Interest Strain Elastography Measurements in the Differential Diagnosis of Breast Masses

  • Hee Jeong Park;Sun Mi Kim;Bo La Yun;Mijung Jang;Bohyoung Kim;Soo Hyun Lee;Hye Shin Ahn
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.431-441
    • /
    • 2020
  • Objective: To compare the diagnostic performance and interobserver variability of strain ratio obtained from one or two regions of interest (ROI) on breast elastography. Materials and Methods: From April to May 2016, 140 breast masses in 140 patients who underwent conventional ultrasonography (US) with strain elastography followed by US-guided biopsy were evaluated. Three experienced breast radiologists reviewed recorded US and elastography images, measured strain ratios, and categorized them according to the American College of Radiology breast imaging reporting and data system lexicon. Strain ratio was obtained using the 1-ROI method (one ROI drawn on the target mass), and the 2-ROI method (one ROI in the target mass and another in reference fat tissue). The diagnostic performance of the three radiologists among datasets and optimal cut-off values for strain ratios were evaluated. Interobserver variability of strain ratio for each ROI method was assessed using intraclass correlation coefficient values, Bland-Altman plots, and coefficients of variation. Results: Compared to US alone, US combined with the strain ratio measured using either ROI method significantly improved specificity, positive predictive value, accuracy, and area under the receiver operating characteristic curve (AUC) (all p values < 0.05). Strain ratio obtained using the 1-ROI method showed higher interobserver agreement between the three radiologists without a significant difference in AUC for differentiating breast cancer when the optimal strain ratio cut-off value was used, compared with the 2-ROI method (AUC: 0.788 vs. 0.783, 0.693 vs. 0.715, and 0.691 vs. 0.686, respectively, all p values > 0.05). Conclusion: Strain ratios obtained using the 1-ROI method showed higher interobserver agreement without a significant difference in AUC, compared to those obtained using the 2-ROI method. Considering that the 1-ROI method can reduce performers' efforts, it could have an important role in improving the diagnostic performance of breast US by enabling consistent management of breast lesions.

A Study on the Evaluation of the Automatic Measurement Method of Plastic Strain Ratio by Two Extensometers (신장계에 의한 소성변형비 자동측정법의 평가에 관한 연구)

  • 김인수
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.504-512
    • /
    • 2003
  • The plastic strain ratios(R-values) of low carbon steel sheets were determined by the automatic strain measurement method using two extensometers, the indirect photo method for the same tensile specimen during tensile test and the indirect method for the specimen after tensile test. The experimental results showed that the measured plastic strain ratios from the automatic strain measurement method using two extensometers coincided with those from the indirect photo method and the indirect method for all tensile specimens. In addition, the strain dependence of plastic strain ratios could be continuously recorded and the anisotropy of the strength coefficient, K, and strain hardening exponent, n, could be automatically calculated in three directions by computer through the use of two extensometers. The experimental results showed that the strain dependence of R-value was related to the anisotropy of strain hardening exponent in low carbon steel sheets.

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings (날개 대변형 예측의 정확성 향상을 위한 변형률 보정)

  • Lee, Hansol;Kim, In-Gul;Park, Sunghyun;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

Pastic Strain Ratio and Texture Evolution of Aluminum/Polypropylene/Aluminum Sandwich Sheets (알루미늄 5182-폴리프로필렌 샌드위치 판재의 소성변형비 및 집합조직의 발달)

  • Kim, Kee-Joo;Jeong, Hyo-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.57-66
    • /
    • 2006
  • AA5182-polypropylene sandwich sheet was manufactured, and the mechanical properties evaluation was executed in order to identify $L{\ddot{u}}ders$ band that causes fabrication process problem and especially surface roughness. To identify formability, deformation behavior, plastic strain ratio (R-value) and pole figure were measured, and texture analysis was performed. In the case of sandwich sheet, the unstable deformation behavior has decreased. As well, for sandwich sheet, A1 skin could manage the most of load, and the elongation has improved about 45% more than that of A1 skin. The plastic strain ratio of A1 skin and sandwich panel, which indicates serration behavior, was obtained from instantaneous plastic strain ratio evaluation. Also, the planar anisotropy of sandwich sheet has decreased more than that of A1 skin. According to these results, the sandwich sheet produced lightening effect and could control unstable deformation characteristic, that is, surface roughness caused by $L{\ddot{u}}ders$ band. Furthermore, it was proved that the texture control of the rolling attachment of A1 skin is necessary to improve the formability of the sandwich panel.

A Study on Transition of Shrinking Flame Disk to Flame Hole at Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 소화하는 화염디스크로부터 화염구멍으로 천이에 관한 연구)

  • Park, Dea-Geun;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.16-25
    • /
    • 2008
  • Experiments have been conducted to clarify impacts of curtain flow and velocity ratio on low strain rate flame extinction, and to further display transition of shrinking flame disk to flame-hole. Critical mole fractions at flame extinction are examined in terms of velocity ratio, global strain rate, and nitrogen curtain flow rate. It is shown that multi-dimensional effects at low strain rate flames through global strain rate, velocity ratio, and curtain flowrate dominantly contribute to flame extinction and transition of shrinking flame disk to flame hole. Our concerns are particularly focused on the dynamic behavior of an edge flame in shrinking flame disk.

  • PDF

Modified Equivalent Radius Approach in Evaluating Stress-Strain Relationship in Torsional Test

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 2008
  • Determination of stress-strain relationship in torsional tests is complicated due to nonuniform stress-strain variation occurring linearly with the radius in a soil specimen in torsion. The equivalent radius approach is adequate when calculating strain at low to intermediate strains, however, the approach is less accurate when performing the test at higher strain levels. The modified equivalent radius approach was developed to account for the problem more precisely. This approach was extended to generate the plots of equivalent radius ratio versus strain using modified hyperbolic and Ramberg-Osgood models. Results showed the effects of soil nonlinearity on the equivalent radius ratio curves were observed. Curve fitting was also performed to find the stress-strain relationship by fitting the theoretical torque-rotation relationship to measured torque-rotation relationship.

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.

An Experimental Study on Stress-Strain Behavior of Confined Concrete Columns with Rectangular Sections (직사각형 단면 콘크리트 기둥의 응력-변형 거동에 관한 실험연구)

  • Oh, Byung-Hwan;Kim, Ki-Wan;Choi, Seung-Won;Park, Young-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.345-352
    • /
    • 2005
  • The purpose of this study is to analyze the stress-strain behavior of confined concrete columns with rectangular section. Uniaxial concentric loading tests of nineteen concrete columns with rectangular section ($150{\times}100$, $250{\times}100$, $350{\times}100\;mm$) were conducted. The main variables are transverse reinforcement volumetric ratio and spacing, cross tie arrangement, cross-section aspect ratio, and concrete strength. From the present experiments, it was found that the increase of transverse reinforcement ratio increases the maximum stress and ductility ratio and the reduction of the spacing of transverse reinforcement also increases the ductility and effective confinement. The increase of the aspect ratio of the cross-section does not influence much the stress-strain behavior of rectangular columns within the aspect ratio range of 3.5. The effect of concrete strength on ductility is also discussed.

  • PDF

Diagnostic Potential of Strain Ratio Measurement and a 5 Point Scoring Method for Detection of Breast Cancer: Chinese Experience

  • Parajuly, Shyam Sundar;Lan, Peng Yu;Yun, Ma Bu;Gang, Yang Zhi;Hua, Zhuang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1447-1452
    • /
    • 2012
  • Aim: To evaluate the differential diagnostic potential of lesion stiffness assessed by the sonoelastographic strain index ratio (SR) and elastographic color scoring system (UE) for breast lesions. Materials and Methods: Three hundred and forty two breast masses (158 benign and 184 malignant) from 325 consecutive patients (mean age 44.2 years; range 16-81)who had been scheduled for a sonographically guided core biopsy were examined proposed by Itoh et al, with scoring 1-3=benign and 4-5=malignant. Strain and area ratios of each lesion were calculated within the same machine. Histological diagnosis was used as the reference standard. The area under the curve (AUC) and cut-off point were obtained by receiver operating curve and the cross table Fischer Test was carried out for assessing diagnostic value. Sensitivity, specificity, PPV, NPV, accuracy and false-discovery rates were compared. Results: The mean strain ratios for benign and malignant lesions were 1.87 and 7.9 respectively. (P<0.0001). When a cutoff point of 3.54 was used, SR had a sensitivity of 94.6%, a specificity 94.3%, a PPV of 95.1%, an NPV of 93.7% and an accuracy of 94.4%. The AUC values were 0.90 for the 5 point scoring system (UE) and 0.96 for the strain index ratio. The overall diagnostic performance was SR method was better (P<0.05). Conclusions: Strain ratio measurement could be another effective predictor in elastography imaging besides 5 the point scoring system for differential diagnosis of breast lesions.