• Title/Summary/Keyword: Strain of Structure

Search Result 2,001, Processing Time 0.028 seconds

The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess (풍화 화연토와 loess의 붕괴특성 비교)

  • 도덕현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.

The measurement of the internal strain of a concrete specimen using optical fiber interferometric sensors (광섬유 간섭계 센서를 이용한 콘크리트 구조물의 내부 스트레인 측정)

  • Lee, Kyung-Jin;Park, Jae-Hee;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.304-309
    • /
    • 2001
  • A Fiber optic strain sensor for the measurement of the internal strain of a concrete specimen was developed. This sensor was a 11 mm Fiber-optic Fabry-Perot interferometer attached inside a stainless steel pipe of 2 mm diameter. The fabricated strain sensors were embedded in a reinforced concrete structure of $100{\times}100{\times}500\;mm^3$ size and were measured the internal strain of a concrete structure when the external pressure was applied to the structure. For a field application, the strain sensors were attached on the bottom of a real bridge and dynamic loading test were executed. In the test, they showed good sensitivity as a deformation sensor and capability of remote monitoring.

  • PDF

A multitype sensor placement method for the modal estimation of structure

  • Pei, Xue-Yang;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In structural health monitoring, it is meaningful to comprehensively utilize accelerometers and strain gauges to obtain the modal information of a structure. In this paper, a modal estimation theory is proposed, in which the displacement modes of the locations without accelerometers can be estimated by the strain modes of selected strain gauge measurements. A two-stage sensor placement method, in which strain gauges are placed together with triaxial accelerometers to obtain more structural displacement mode information, is proposed. In stage one, the initial accelerometer locations are determined through the combined use of the modal assurance criterion and the redundancy information. Due to various practical factors, however, accelerometers cannot be placed at some of the initial accelerometer locations; the displacement mode information of these locations are still in need and the locations without accelerometers are defined as estimated locations. In stage two, the displacement modes of the estimated locations are estimated based on the strain modes of the strain gauge locations, and the quality of the estimation is seen as a criterion to guide the selection of the strain gauge locations. Instead of simply placing a strain gauge at the midpoint of each beam element, the influence of different candidate strain gauge positions on the estimation of displacement modes is also studied. Finally, the modal assurance criterion is utilized to evaluate the performance of the obtained multitype sensor placement. A bridge benchmark structure is used for a numerical investigation to demonstrate the effectiveness of the proposed multitype sensor placement method.

A Study on the Lifted Flame Structure with Strain Rates in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 신장률에 따른 부상된 화염 구조에 관한 연구)

  • SIM, KEUNSEON;JANG, BYOUNGLOK;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.347-356
    • /
    • 2015
  • A study has been conducted numerically to investigate the lifted flat syngas flame structure of impinging jet flame configuration with the global strain rates in 10% hydrogen content. In this study, the effects of strain rate were major parameters on chemistry kinetics and flame structure at stagnation point. The numerical results were calculated by SPIN application of the CHEMKIN package. The strain rates were adjusted with Reynolds numbers of premixed syngas-air mixture. Different flame shapes were observed with different strain rates. As strain rate has increased, the flame temperature and axial velocity have been decreased due to the flame heat loss increment, and the OH radical reaction zones become narrower but each mole fractions are still constant. Also, the reversion of $H_2O$ product near stagnation point has been found out when strain rate has increased. This phenomenon is attributed to the rapid production of oxidizing radical reaction such as the R12 ($H+O_2(+M)=HO_2(+M)$), which makes the R18 ($HO_2+OH=O_2+H_2O$) reaction increment.

다중 병렬판 구조의 변형률 분포해석

  • 김갑순;강대임;송후근;주진원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.585-590
    • /
    • 1995
  • This paper describes strain distribution analysis of a multiple parallel plate structure for a multi-componenet force and moment sensor. A parallel plate structure which has higher rigidity than a simple beam structure are widely used for multi-component force and moment sensor. The strain distribution in the beams of a parallel plate structure should be accurately calculated to design a high precision multi-component force and moment sensor. We derived equations to calculate the strains for multiple parallel plate structure. It reveals that results from finite element analysis and experiment are in good agreement with results from the derived equations.

Analysis of Post Weld Deformation at HAZ by External Forces Based on Inherent Strain (고유변형도 기반 열변형부의 후속 하중에 기인한 용접 후 변형 해석)

  • Kim, Jong-Tae;Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.220-227
    • /
    • 2006
  • In case of welding, the inherent strains are generated, because a structure experiences the plastic yielding. The inherent strain is defined as the irrecoverable strain after removing structural restraints and loading. For the analysis method of welding distortion, equivalent loading method based on inherent strain is in general use due to its efficiency and effectiveness. However, it is generally difficult to know the final strain of the welded structure if additional loadings were applied after welding. for this reason, this study introduced the concept of the hardening and added the hardening term to the equivalent loading method based on inherent strain. Therefore, the purposes of this study are to develop the inherent strain formula considering the hardening effect and to calculate residual Stresses Using Proposed inherent Strain. Also, this Study Verified the availability Of proposed inherent strain method by loading-unloading experiment on welded plate.

Analysis of Strain Distribution According to Change in the Vacancy Shape of the Lightweight Dual-Phase Structure (경량화된 이중상 구조의 중공 형태 변화에 따른 변형률 분포 분석)

  • Lee, J.A.;Kim, Y.J.;Jeong, S.G.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.267-272
    • /
    • 2022
  • A dual-phase structure refers to a material with two different phases of components or crystal structures. In this study, we analyze the stress distributions for harmonic and composite structured materials which are a kind of dual-phase structure materials. The finite element method (FEM) was used to progress compression test to analyze the strain distribution, and rather than constituted of a fully dense material, a dual-phase structure was designed to make a lightweight structure that has different shapes and volumes of vacancy in each case. As a result of each case, the dual-phase structured materials showed different stress distribution patterns and based on this, the cause was identified through the research.

1Monitoring system for the subway structures using pre-strain controllable FBG sensors (프리스트레인 가변형 광섬유센서를 이용한 지하철 구조 모니터링시스템)

  • Kim, Ki-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.700-709
    • /
    • 2009
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well.

  • PDF

Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model (M-K 모델 기반의 박판금속 성형성 평가에서 물성의 영향에 대한 해석적 연구)

  • Lou, Y.;Kim, S.B.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.393-398
    • /
    • 2010
  • This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.